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Welcome to the third volume of the Kluwer International Series on
ADVANCES IN INFORMATION SECURITY. The goals of this series
are, one, to establish the state of the art of and set the course for future
research in information security and, two, to serve as a central reference
source for advanced and timely topics in information security research and
development. The scope of this series includes all aspects of computer and
network security and related areas such as fault tolerance and software
assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough
and cohesive overviews of specific topics in information security, as well
as works that are larger in scope or that contain more detailed background
information than can be accommodated in shorter survey articles. The
series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

The success of this series depends on contributions by researchers and
developers such as yourself. If you have an idea for a book that is
appropriate for this series, I encourage you to contact either the
Acquisitions Editor for the series, Lance Wobus (Iwobus@wkap.com), or
myself, the Consulting Editor for the series (jajodia@gmu.edu). We would
be happy to discuss any potential projects with you. Additional
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About this volume

The third volume of this series is entitled Recent Advances in RSA
Cryptography by Stefan Katzenbeisser. Named after its inventors Ronald
Rivest, Adi Shamir, and Leonard Adleman, RSA is the best known and
most important public key cryptosystem. It can be used to provide secrecy
as well as digital signatures, and has become a de facto standard for
implementations that use public key cryptography.

Since its publication in 1978, RSA has undergone extensive scrutiny by a
number of cryptanalysts. This volume provides an excellent and up-to-date
description of these fascinating efforts. The necessary background material
from number theory and computational complexity is included. This
volume is an essential resource for researchers as well as practitioners
working in the area of security.

Stefan Katzenbeisser studied Computer Science at the Vienna University
of Technology and is an editor of Information Hiding Techniques for
Steganography and Digital Watermarking (Artech House, 2000).

SUSHIL JAJODIA
Consulting Editor



Preface

If we take in our hand any volume; of divinity or school metaphysics, for instance; let
us ask, ‘Does it contain any abstract reasoning concerning quantity or number?’ No.
‘Does it contain any experimental reasoning concerning matter of fact and existence?’
No. Commit it then to the flames: for it can contain nothing but sophistry and illusion.
—David Hume

In the mid 1990’s, a series of letter bomb attacks, motivated by racist reasons,
struck Austria. The recipients of these bombs were people engaged in multi-
cultural activities or who were known as supporters of refugee organizations.
Several people were injured seriously. Some months later the perpetrator sent
a letter of confession to the Austrian authorities, encrypted in the RSA system
using the RSA modulus

63054821507012954715671833249588963223443414541197127588
83769876032602252527879261352767389441056891000362955358

n = 68141424386536403649578707699128189491432138631900590774
72921499001536910276096488477634484971781148430952891504
0117952098061886881.

The author(s) believed that the factorization of n would require tremendous
efforts, even on a modern supercomputer, and (perhaps) speculated that their
letter would be safe for a long period of time. In a cynical statement they
mentioned that supercomputers were built for solving this academic, simple-
looking “Highschool”-like problem. However, n can be factored immediately
on a conventional PC revealing the secret factors

25110719126901354976190933395867124680240805711276844886
p= 25095982415620518894940618473529578838756113516752943024
3075948799
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and

25110719126901354976190933395867124680240805711276844886
g = 25095982415620518894940618473529578838756113516752943511
8429780319.

Consequently, the letter of confession could be read by the authorities within
some weeks. Does this incident allow to draw the conclusion that the RSA sys-
tem as a whole is insecure? As RSA is perhaps one of the most frequently used
public key cryptosystems, this would have enormous consequences. Luckily,
the authors of the letter simply chose an instance of the RSA cryptosystem that
can be broken easily (basically they made the vital mistake to choose primes p
and g with only a small difference; however, it is interesting to note that both p
and g are “doubly safe primes” in the sense of the definition on page 70).

Ever since the RSA cryptosystem was published in 1978 by Rivest, Shamir
and Adleman, it has attracted numerous researchers with various backgrounds
(number theorists, complexity theorists and computer security experts to name
but a few) because of its elegance and practicability. RSA is perhaps today
the most well-known public key cryptosystem; accordingly, many theoretical
results regarding the security of RSA are known. Many of them are “bad news”
for a cryptanalyst, stating that breaking RSA is still likely to be intractable;
however, some weaknesses have been found recently in special instances of the
RSA system.

This work tries to survey the most important achievements of the last 22
years of research in a unified way; special emphasis is laid on the description
and analysis of proposed attacks against the RSA system. It was my goal to
briefly discuss results from various aspects of RSA cryptography, but I am
aware of the fact that such an effort will always remain incomplete. Due to
space constraints and in order to improve understanding, some proofs are not
presented in full length; in these cases only a proof sketch omitting technical
details is given. If more information is needed, I refer to the literature where
appropriate.

Chapters 1 and 2 introduce the necessary background information on number
theory and computational complexity. Especially we need precise definitions
of “efficient computation” and “computational equivalence”; the latter term
will be defined using so-called reductions between computational problems.
Although this monograph is not intended to be self-contained, all necessary
numbertheoretic results are presented (mostly without proofs).

Chapter 3 introduces public-key cryptography, especially the RSA system.
Additionally, “one-way functions,” which form the basis of public-key cryp-
tosystems, are defined and results regarding their existence are proved. The
chapter concludes with a discussion of the computational complexity of (low
exponent) RSA. Chapter 4 surveys the most important factorization techniques
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and Chapter 5 summarizes the main properties of the RSA system that make it
attractive for cryptographers. We will e.g. show that computing the decryption
exponent or even the least significant bit of the plaintext, given only the public
key and corresponding ciphertext, is computationally equivalent to breaking
RSA as a whole.

Chapter 6 focusses on special instances of the RSA systems, namely those
that use either a low encryption or decryption exponent. It will be shown that
these systems are probably insecure (but we should note that all these attacks
cannot be generalized to other RSA instances, so they pose no threat to the “en-
tire” system). Chapter 7 discusses implementation and protocol attacks; attacks
that do not attempt to find a “mathematical solution” to the RSA problem but
rather try to find flaws in communication protocols or faulty implementations.
Finally, Chapter 8 will outline possible applications of the RSA function in
signature schemes.

Acknowledgements. I am grateful to all persons who read preliminary versions
of this monograph and provided me with feedback, especially the anonymous
referees who suggested to insert additional material for the sake of complete-
ness. I also thank Prof. Hans Kaiser and Prof. Hans Stetter for their mathemat-
ical advices. Finally, I thank Lance Wobus and Sharon Palleschi from Kluwer
for mastering all difficulties which arose during the production of this book.

The quotations appearing at the beginning of each chapter are taken from a
collection of mathematical quotes maintained by Mark R. Woodard, available at
http://math.furman.edu/“mwoodard/mqs/mquot.shtml. I am grateful
for his permission to use them in this book.

Stefan Katzenbeisser
Vienna, April 2001
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Chapter 1

MATHEMATICAL BACKGROUND

.. in mathematics you don’t understand things, you just get used to them.
—John von Neumann

The aim of this chapter is to summarize important results from number theory
and algebra which will be used in subsequent chapters. Most theorems are
provided without proof, since their proofs can be found in many elementary
text-books on number theory [47] or algebra (a proof will only be presented in
case the proof technique is relevant for later applications).

1.1.  Divisibility and the residue class ring Z,,

Given two integers a and b, we say a divides b (and write a | b) if there exists
an integer ¢ such that ac = b. A divisor of 1 is called unit (in Z the only units
are —1 and 1). It is easy to verify the following properties for all a, b, c € Z:

m l|aanda]a,

» from a|band b|cit follows that a | c,

m ifa|band b|a then a = +b,

» if a|bthen ac|be,

m ifa|banda|cthena|(zh+ yc) forall z,y € Z.

We call two elements a and b of a commutative ring with 1 associated, if
there exists a unit e such that a = eb. A common divisor d of a and b is called
greatest common divisor, written d = gcd(a, b), if every common divisor ¢
of a and b divides d, i.e. if for all £ € Z with ¢|a and ¢|b we have ¢|d.
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The greatest common divisor is unique up to multiplication with a unit; if we
speak of “the ged” in Z, we refer to the positive greatest common divisor. The
greatest common divisor of two integers can be found using one of the oldest
known algorithms, the Euclidean algorithm, which is based on the following
observation:

THEOREM 1.1 Given two integers a and b with b # 0, we can find integers q
and r with 0 < r < |b| so thata = qb+r.

In the previous theorem, g can be thought of as the integer part and r as the
remainder of the division a/b. Since ged(a,b) = ged(b, a), ged(lal, b)) =
ged(a, b) and ged(a,0) = |a| it suffices to discuss the case a > b > 0. The
Euclidean algorithm starts by finding—according to the previous theorem—
two integers ¢, and r; witha = ¢1b + 71 and 0 < r; < b. Next, we can take
the numbers b and r; as a basis for these computations, yielding two integers
g2 and 7o with b = ¢gor1 + 72 and 0 < 79 < 7. By iterating this step, we get
the schema

a=qb+r with 0<7r; <b,
b=qor1 + 1o with 0 <7y <7y,
71 = q3ry + 713 with 0<r3 < T2,
Tn—2 = gnTn—1 +Tp with 0<r, <rp_y,

n—1 = Qn+17Tn-

The last nonzero remainder 7, is the greatest common divisor of a and b;
such a remainder must exist, since the sequence r; is strictly decreasing (i.e.
0 <...<mr <mr-p <...<rp). Itiseasy to see that r, is a divisor
of a and b by reading the schema “backwards™: by observing r,, | 7,_; and
Tn—2 = gnTn—1 + T We Obtain 1y, | 7y, _o. Similarly, since 7y, | 7—1, 7 | Pn_2
and 7,3 = gn—_1Tn—2 + Tn_1, it follows that r,, | 7,_3. This argument can be
applied recursively to verify that r, | @ and 7, | b. To see that r, is indeed a
greatest common divisor of a and b, we note that for every divisor ¢ of ¢ and
b,t|a and t|b. From the first line of the scheme we get ¢ | r; and—using this
result—from the second line ¢ | 7,. By induction, we conclude that ¢ | r; for all
1 <4 < n and thus r, is the greatest common divisor of ¢ and b.

A careful analysis (see e.g. Knuth [59, pp. 339ff]) shows that the Euclidean
algorithm performs on the average (12 In2 Ina)/7? ~ 1.9405 log;, a steps
(ifa > b > 0) and at most log), a divisions, where A = (1 + v/5)/2.

A direct consequence of Euclid’s algorithm is the following important prop-
erty of the greatest common divisor, showing that the greatest common divisor
of a and b can always be expressed as a linear combination of a and b:
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THEOREM 1.2 Let a and b be integers with greatest common divisor d. Then,
there exist integers x and y so that d = ax + by.

Proof: We show by induction that every r; (and thus also 7, = d) can be
expressed as a linear combination of a and b. By setting r_; = a and ro = b,
the claim is trivial for r_; and ry. Suppose now that every r; with ¢ < k can
be written as linear combination of a and b, i.e. there exist integers z; and y;
with r; = x;a + y;b. Then,

Te = Tk—2— qkTk-1
= (Tr—2a + yr—2b) — qr(zk—10 + yr_1b)
= a(Tr-2 — qkTr-1) + b(Yk-2 — QYr—1)

Setting xx, = Tx—2—qxTr—1 and Yx = Yr—2 — qrYr—1 completes the proof. O

Note that the sequence z; and y; in the last proof is efficiently computable in
arecursive manner. An extension of the Euclidean algorithm, which computes,
besides the d = gcd(a, b) of two integers a and b, also the integers z and y of
the last theorem, is called extended Euclidean algorithm and can be outlined as
follows (the variables = and y represent the sequences z; and y; in the proof of
Theorem 1.2):

if b =0 then d := a; z := 1, y := 0; exit end if

z2 =121 =02 := 0,91 := 1

while b > 0
q:=la/bl;r:=a—qbz:=z3 — qr1;y := Y2 — qy1;
a:=bb:=rizy:=21;21 =292 :=y1; 91 1=V

end while

d:=a;x = Loy := Y23

return (d, z,y);

The least common multiple d of two integers a and b, written lcm(a, b) is a
multiple of both a and b with the property that d divides every common multiple
of a and b. Similar to the greatest common divisor, the least common multiple
is unique up to multiplication with a unit; if we speak of the lcm in Z, we always
refer to the positive Icm. It is easy to show that Icm(a, b) = |ab|/ ged(a, b).

An element p of any integral domain is called prime, if it is not a unit, not
zero and the following condition holds: if p divides any product ab of elements
of the integral domain, then p divides a or b. In special rings, called ZPE rings,
primes are exactly those elements that are irreducible. An element p (which is
neither a unit nor zero) is irreducible, if p equals a product ab then either a or b
must be a unit. Such ZPE rings have the interesting property that any element
can be uniquely written (up to arrangement of factors and multiplication with
a unit) as product of primes.



