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Preface

For the first systematic investigations of the theory of cluster sets

of analytic functions, we are indebted to IVERSEN [1—8] and GRross
[1—38] about forty years ago. Subsequent xmportant contributions before
1940 were made by SEIDEL [1—2], Doos [1—4], CARTWRIGHT [1—3]

and BEURLING [1]. The investigations of SEIDEL and BEURLING gave

great impetus and interest to Japanese mathematicians; beginning
about 1940 some contributions were made to the theory by Kunucur

[1—38], IriE [1], TOx1 [1], Tumura [1—2], KAMETANI [1—4], Tsujt (4] b

and NosHIRO [1—4]. Recently, many noteworthy advances have been
made by BAGEmiHL, SEIDEL, COLLINGWOOD, CARTWRIGHT, HERVE,
LEHTO, LOAWATER, MEIER, OBTSUKA and many other mathematicians.
The main purpose of this small book is to give a systematic account on
the theory of cluster sets.

Chapter I is devoted to some definitions and preliminary discussions.
In Chapter II, we treat extensions of classical results on cluster sets to

the case of smgle-value& analytic functions in.a general plane domain -

whose boundary contains a compact set of essential singularities of
capacity zero; it is well-known that HALLSTROM [2] and Tsujr [7]

extended independently Nevanlinna’s theory of meromorphic functions

to the case of a compact set of essential singularities of logarithmic
capacity zero. Here, Ahlfors’ theory of covering surfaces plays a funda-
mental réle: Chapter IIT is concerned with functions meromorphic in the
unit circle. We discuss here functions of class (U) in Seidel’s sense,
boundary theorems of COLLINGWOOD-CARTWRIGHT, recent important

results of BAGEMIHL-SEIDEL and COLLINGWOOD on the relation between

Baire category and cluster sets, Bagemihl'’s results on ambiguous points,
Meier’s results related to Lusin-Privaloff-Plessner’s theorem and results
of LEHTO and VIRTANEN on meromorphic functions of bounded type and
normal meromorphic functions. In Chapter IV, we deal with single-
valued analytic functions on open Riemann surfaces and discuss covering
properties and boundary behaviours. We state here some recent results
of Heins, KuropA, KuraMocH? and CONSTANTINESCU-CORNEA from the -
viewspoint of cluster sets. We hope that these fragmentary treatments
will contribute to the future theory of cluster sets of analytic functlons

on open Riemann surfaces. Appendix is devoted to cluster sets of pseudo— (g

analytic functmns A recent paper of BEURLING«AHLFORS [1] contains a
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ing result from the view-point of cluster sets. We cannot apply the
theory of functions of class (U) in Seidel’s sehse to the case of pseudo-
analytic functions without any additional condition. We discuss to what
ent results on cluster sets of analytic functions can be ‘extended to the
of pseudo-analytic functions. i b
It has'been .my’eamest desire to write a systematic account on cluster
since some years ago. I should like to express my hearty thanks to
sor LARs V. AHLFORS for his kind recommendation to the Ergeb- |
e Series. I am very grateful to my colleague Professor T. Kuropa

‘my students Mr. R. IwagAsHI, Mr. M. Kisa1 and Mr. M. NAKAT for
careful readings of the manuscript and for theis helpful comments.
also a pleasure to acknow‘ledgé the cons'ant generosity and courtesy

f the Springer Verlag.

jember 10,1959 '~ Krvosar NOSHIRO
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1. Definitions and preliminary discussions

§ 1. Definitions of Cluster Sets

1. Let D be an arbitrary domain® with boundary I'. Let E be a
totally disconnected closed set contained in I'.'We suppose that w = fla) .
is non-constant, single-valued and meromorphic in D. We associate with -
every point z, of I' the following sets of values.

(i) The Cluster Set Cp(f, z). @€ Cp(/, 2,) if there exists a sequence of
points {z,} with the following properties

W€D, lmz,~z, hmfls)=&.
n~—>00 7 —>00 \ :

If we denote by 9, the set of values of w = f(z) in the mtersectlon 13
of D with a circular disc |z— z,| < 7, then

CD (f' zo) =’g°9r » it ; (2)
- where ®, denotes the closure of ®,2.
Evidently Cp(f, %) is a non-empty closed set. In the particular case
where D is a Jordan domain bounded by a simple closed curve, Cp(f, 2o)
is either a single point or a continuum. However, this property does not
hold in general cases®.
Remark. Consider the special case where z, is an accessible bounda:y
point of D. Then, there exists a path (simple curve) L in D terminating
at z,. Denote by z, the last point of intersection of L with a circle c:

L

i

—

|z2— 2| = r and by L, thearcz,,zoofl; such an arc is called a last part €

of L. The intersection D, of D with (¢): |z — 2| < 7 is an open set which
consists of at most an enumerably infinite number of connected com-
ponents. Let 4, be the component which contains the last part L, of L.

. If we denote by ®% the value set of f(z) in 4,, then ¥ is a domain‘and,
hence, ®¥ is a continuum. Hence the set

7Y = N D ' '
Colf, 20 1) = 0 B} @

is either a single point or a continuum. Suppose that L’ is another path
in D terminating at z,. If. for every sufficiently small 7(>0), the last

! The order of connectivity of D may be infinite.

* For any point set M, M always denotes its closure.

3 Take as D the unit circular disc with 2 radial slit and select a boundary point
24(==0) on the slit. If w =f(2) is a function mapping D conformally onto |w| < 1,-
then Cp(f, z,) consists of two points.

¥rgebn, d. Mathem. N. F. H. 28, Noshiro 1



2 Definitions and preliminary discussions

parts L, and L; can be joined by a suitable path in D,, then we say that L
and 1.’ are equivalent and define the same accessible boundary point of D
at z,. It is easy to show that if L and L’ are equivalent, then

Cu(f %3 L) = Cp(f 20; L) - -(4)

Cp(f 20: L) Cp(f, 2)) - ) (5)
In the particular case where D is a Jordan domain,

" Evidently

Cp(f, %) = Cp(f, %: L) - ®) -

(i) The Boundary Cluster Sets Cp(f, %) and Cr_ g (f, zo). @€ Cp(f, %)
[resp. Cr_g(f, 25)] if there exists a sequence of points {{,} of I'—z,
[xesp. I' — zp— E] such that

w, € Cp(f, C,) for each =,
Z= lim{, and «= limw,;
T N0 n->o0

i. e, if M, denotes the closure of the union U Cp(f, ) for every ¢ of the

common part of I'— z, [resp. I'— z,— E] and (€): |2— 2| < 7, then
f;olw is Cp(f, 2p) [resp. Cr_ g (f,2o)]. Obviously Cr(f,2,) and Cr_ g (f, z))
are closed;

P

Cr-g(f, 2) CCr(f, 2) CCp(f, %) ; @)
if z,¢ B—E or if zy¢ E— E’, E’ denoting the derived set of E, then

Cr_e(fiz) =C (£ %) .

Cplf, 29)is empty ifand only if zyis an isolated boundary point; Cr_z(f %)

is empty if and only if 2, ¢ (F—E).

(i) The Range of Values Rp(f, z). This is defined as the set of
- values « such that z,€ D, im z,= 2y, f(%,) = «; 1. e,

N>

RDU zo) n Qr ¥ ' (8)

where ®, is the value set of w = f(z) in the common part of D and (¢):
|2 — zy| < 7. Accordingly, Rp(/f, zo) is a G, set.

(iv) The Asymptotic Set 4p (f, o). Let z,be an accessible boundary
point of D. A complex number « is called an asymptotic value of w = f(2)
at z,if f(2) - « as z — zyalong a path in D terminating at z,. The asympto-
tic set 4 p(f, 2,) is defined as the set of asymptotic values of f(z) at z,

We define 4 p(f, z) = & when z, is an inaccessible boundary point for
thé sake of convenience.

2. We shall state a relation between Cp(f, z,; L) and Cp 520

which will be used later. If z, is an accessible boundary point of D defined

e S



§ 2. Some classical theorems 3

by a path L in D terminating at z, and 1f 2, is an accumulation point of
I'—E, then

Cp(f 20: L) N Cr_g(f 20) +0 . ©)

- To prove this, let {{,,} be a sequence of points such that {,€I"— E and
a — % Construct a simple closed curve y, passing through £, such that
¥ surrounds z, and does not meet E. By a suitable choice of the sequence
{va}, we may assume that the diameter of y, converges to zero. Let z, be
the last point of intersection of L with y,. Then, it is obvious that the
component, containing z,, of the intersection of v, with D.is a cross-cut
of D whose end-points lie in ["— E. From this fact follows that for every

positive number' 7, ©F and M, (defined before) have a point in common
and hence (9) holds.

§ 2. Some classical theorems

We recall some important classical theorems wlnch will be made
- use of for the sequel. :

1. Let w = f(2) be a single-valued meromorphic function in a doma.m
D: 0 < |2— 2| < » which has an essential singularity at z,. Then, it is
well-known that

(i) Cp(f, %) is the whole w-plane (Weierstrass’ theorem)

(ii) the complement € Ry (f, z,) of Rp(f, zo) with respect to the w-plane
contains at most two points (Picard’s theorem);

(iii) €Rpf, 20) CAp(f, z) (Theorem of IVERSEN [1]).

2. Iversen’s theorems!. Let w = f(2) be a non-rational meromorphic
function in |z| < oo and z = @ (w) be its inverse analytic function. Let ¢:
| — «] = 7 be an arbitrary circle in the w-plane. Suppose that e(w, w,)
is an arbitrary (regular or algebraic) element of z = ¢ (w) with center w,
lying in, (¢): |w— «| < . IVERSEN [1] has proved -that 4 is possible fo
find a path y, inside (c), starting at w = wy and terminating at w = a,
such that there exists an analytic -continuation of e¢(w, w,) of algebraic
character® along vy, except perhaps the end-point w = « of y,,; we call this
property Iversen's property or-(I)-properiy3. It is easy to prove that
(I)-property is equivalent to the property that given any element ¢ (w, w,)
of z = @(w), an arbitrary curve A,, starting from w = w, and ending at
w = w,, and an arbitrary strip® S containing A, completely in its

1 NEVANLINNA [6], p. 291.

3 Concerning notions of analytic continuation of algebraic character and
(ordinary or essential) transcendental singularity, cf. CorLinéwoop and CART-
wriGHT [1], pp. 99—103; Nosuiro [4], pp. 43—73.

® Iversen's property of analytic functions has been systematically investigated
by Stoirow (1, 9].

~ 4 5 denotes the union of all circular discs of constant radius and with center
lying on A4,.

. j g
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4 Definitions and preliminary discussions

interior, we can find a path Lw, connecting w, and w,, inside S, along
which the analytic continuation of ¢(w, w,) is possible except perhaps at
w = W,

Suppose that w = f(z) has an asymptotic value & at'z = oo along‘ -
acurve L,: z=2(f), 0 = ¢ < 1, lim z(f) = co. Let ¢, be the element of
t—»1

~ 2 = @(w) corresponding to z (£). Then, the analytic continuation {e;(,,, 0=
= t < 1} of algebraic character along L,,: @ = w(l) =f(z(),0=t<1,

limw (f) = « defines a transcendental (ordinary) singularity at w = a. The
B e | d

converse is also true. If there exists an analytic continuation {e(w, w@(#)),
0st<1}alongapath L, w=w(), 0s¢t<], limw(f) = « which
t—>1

defines a transcendental singularity at # = «, then w = f(z) has an
asymptotic value a at z = oo along the curve L,: z = z(f) = e(w(¢), (¢)),
0=<t<l,limz(f) =oco.

t—>1 »

3. Gross’; star theorem®. Let w = f(z) be a non-rational meromorphic
function and z = @ (w) be its inverse. Let ¢(w, w,) be an arbitrary regular
element of z = ¢ (w). We continue analytically e(w, w,), using only regular
elements, along every ray: arg(w—w,) =0 (0= 0 <2n) towards
infinity. Then, there arise two cases whether the continuation defines a
singularity wy in a finite distance or not; in the former case, we call the
ray a singular ray. For each singular ray: arg(w — @) = 0, we exclude
the segment between the singularity @, and w = oo from the w-plane.
The remaining domain 4,, is clearly a (simply connected) star domain in
which the element e(w, w,) defines a (single-valued) regular branch of
z = @(w). Thestar theorem of Gross [1] states that the set of 6 of singular

‘rays: arg (w — wy) = 0 (0 = 0 < 2m) is of measure zero; i. e., e(w, w,) can
be continued (with rational character) to infinity along almost all rays
from the center w, (Gross’ property). : 3

It is easy to show that Iversen’s theorem is a direct consequence of
Gross’ theorem; i. e., Iversen’s property follows from Gross’ property.
Gross'. property is more metrical and less topological than Iversen’s:
property. ’ » ’

As an application of the Gross star theorem, we prove that if a is an
exceptional value in the sense of PICARD?, then « is an asympiotic value of
w = f(2) at z = co. Without loss of generality, we may suppose that & = oco.

_Choose a point w, such that there exists an infinite number of elements
elw, wo) (m=1,2,...) of 2= @(w) with center w = w,. Then, by the
Gaoss theorem, there exists at least one ray from w = w, along which
every element ¢,(w, ) can be continued to infinity. Since there isonly a

1 NEVANLINNA [6], p. 292.
3 This means that « is taken by @ = f(2) only finite times in |z| < co.

IREEEE W, FE L AKPDFIGEE www. ertongbook. com
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%mgt&mum analytic fuqcﬁoqs in general domains 5

finite number of elements of z = q;(u) w:th center w = oo, the continua-
tion of some e,(w, w,) defines a transcendental singularity at w =f ool
4. We now enunciate some fundamental theorems on meromorphic
~ functions in the unit circle.

Theorem of FATOU?, Let w = f(2) be vegular and bounded in the unit
circle D: |z| < 1. Then, w = f(2) has an angular limit f(e*°) at almost every
point z= et® of I': |z| = A '

Theorem of F. and M Rmsza Let w = f(Z) be regular and boi. mied in
the unit circle D: |z| < 1. If the boundary function f(ef ") is equal to.a ona
subset of positive measure of I, then f(z) = a. 3

NEVANLINNA ¢ has extended these theorems to the case of meromorphxc
functxons of bound=d type.

Theorem of LINDELOF-IVERSEN-GROSSS. Let w = f(2) be a function,
meromorphic in the unit circle D |z| < 1, which omits three dszermt values.
Ifw = f(2) has an asymptotic value o along a simple curve L in D terminat-
ing at zy= €%, then f(2) has necessarily the angular limit « at zy= &*.

Theorem of KoEBE-GROSS®. Let w = [(z) beafzmchon, meromor phic
in |z] < 1, which omils three different values in |z} < 1, and let theve exist
two sequences {2} and {2} such that [z“’! < 1, limz{"= ¢%; 23] < 1,

7% ~—>00

lim 22 = ¢'% where 0, == 0,. If there is & sequence of continuous curves y,

7#—>00
joining 2 to z%) and comtained in an anmulus 1—e, < ]zl < 1, where
&, >0, hms,,— 0 such that on y, we have |f(3) — a| < n, where limn,;= 0,

#—>00 >0

then f(2) = a.

IL. Single-valued analytic functions in general domains

It belongs to one of the most important proklems to study singularities,

. distribution of values, boundary-behaviours of analytic functions of a
general domain of existence and their Riemann surfaces. In"this chapter,
we discuss mainly on single-valued analytic functions with a compact set -
of logarithmic capacity zero of essential singularities from the view-
point of cluster sets”.

1 Modifying the argument slightly, we see that this result also holds in the case
where f(2) is a single-valued meromorphic function in 0 < |z — 2| < 7 ‘with an_
essential singularity at z = z,; i. e. (iii) holds.

% Farovu [1].

* F. and M. Riesz [1].

¢ NEVANLINNA [6], p. 208 and p. 209.

& PrrRAGMEN-LINDELSF 1], IvERSEN [1], Gross [1].

¢ Koxse [1, 2]; Gross [1], pp. 35—36.

7 Nevanlinna’s theory of meromorphic functions (in the parabolic case) has
been extended independently by G. A¥ HlirLstrOM [2] and Tsuj (3, 7] to the case
of a compact set of logarithmic capacity zero of essential singularities.
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v

§ 1. Compact set of capacity zero and Evans-Selberg’s theorem

1. We recall some basic properties of a compact set of capacity zero®.
Let E be a bounded Borel set in the z-planie and u be & non-negative
Completely additive set function defined for the Borel subsets of E.

Then p is called a positive mass-distribution on E. Let u be a posmve
masa—chstnbutlon on E with total mass unity. Then

Urs) = [ tog|-2g| du @) M
E
. is called a (logarithmic) potential of distribution u on E. Writi.ng
V,(E).= supUs(z), V = intV,(E), <. @
s #

we define the (logarithmic) capacity C (E) of E by
C(E) = e V.2 (3)

Obviously 0 < C(E) < oo; if E,C E,, then G(Ey) £ C(E,); moreover, ;f
there exists a sequence of bounded Borel sets E,, such tha.t C(E,) =

for all #, and if E = U E is bounded, then C (E) = 0.

2. Let us consxder a doma.m D, containibg z = 6o in its interior, with
boundary I'. We suppose now that E is a compact set complementary
to D. Let {D,} be an exhaustion of D such;that each D, is bounded by a.
finite number of simple closed analytic curves I',, and such that D, ¢ D, 4
(n=1,2,...). Denote by g,(z, ) Green's function of D, with pole at
z = oo, Since {g,(z, ®)} is a monotone increasing sequence, the littilt is
either a finite function g(z, oo) in D except fot 2 = co or a cqnstant oco.
In the former case, g(z, %) is called Green’s function of D with pole
z = oo and in the latter we say that there exists no Green’s function of D.
Itis Well known that thers exists no Green’s function of D if and only if
C (E)

3. Now, let Dy, be an arbitrary Jordan domain bounded by a simple
closed analytic curve I'y such that D,C D,. For simplicity, we put
G=D—D, G,=D,~D, We denote by wy(2) = w(z, I, G,) the
harmonic measure vnth boundary values 0 on-I'gand 1 on I', respectively.
Since {w,(¢)} is monotonically decreasing, this sequence converges

unifermly on any compact set in G (Harnack’s theorem); we denote the
limiting function by
w@)=wlrl,G).

! Throughout this book, ‘‘capacity’” always means “logarithmic capacity’.
Logarithmic capacity, logarithmic potential and harmonic measure are discussed in

details in NEVANLINNA [6]. Concerning general potentials, cf. FrosTMANN [1],
KameTan: [4].

2 In case V = oo, we put C(E) = 0.
3 NEVANLINNA [6], p. 123.




§ 5 Compa.ct set of capacity zera and Evans-Selberg s theorem =

e e e

Evidently, w (2) is harmonic on G I'y}; @ (2) = 0 onljand0 s w(d) <1
in G. By the minimum principle, if w (2) vanishes at some point in G, then
w(z) =0. If w(z I', G) = 0, then we say that E is of absolute harmonic
measure zero (NEVANLINNA) 2. If I” contains a non-degenerate continuum,

then w (2, I', G) > 08, Accordmgly, if I'is of absolute harmonic measure -

zero, then I' (and therefore E) is totally disconnected. Furtharmore,
I is of absolute harmonic measure zero if and only if C (E) =

Remark. Letting z, (¢ = 1, 2, , #) vary on a compact set E, we
denote by V the maximum value of the quantity

Va2, - n) o n lzk_ Z,\l
)
Then, ]/’f/' is monotonically decreasing and converges, to a limit 7 (E)
~ which is named by FERETE [1] the transfinite diameter of E. It is known
that C (E) = =(E)®.

4. We add a remark on metrical propertles of a compact set of
capacity zero®. Let E be a compact set. If for any positive number &, we
can cover E by a sequence of circular discs K, of radius 7, such that
Zr, < &, then we say that E is of linear measure zero. Similarly, we
define E to be of logarithmic measure zero, by replacing Zr, <& by
2 (logt1 /r,,)"]L < e. It is known that if E is of logarithmic measure zero,
then C(E) = 0; if C(E) = 0, then E is of linear measure zero; their
converses are not frue. f

5. Evans-Selberg’s theorem. G. C. EVANS [1] and H. SELBERG [1]
have proved independently the following

Theorem 1. Let E be a compact set of capacity zero. Then there exists a
positive mass-distribution y on E with total mass unity, such that its potential

’ 1 : .
wi) = [ 1o 2wt @
1s positively infinile at every point of E and at no other points. '
“Proof?. Given » pomts @y, Gy, « .., @, on E, we form a polynomial

P(z) = (z— ay) (z— ay) . . . (z— a,). Denote by M, the maximum modulus

1 Since w,(2) = 0 on I, it follows, by Schwarz's principle of reflection, that
 (2) is also harmonic on [
* The distinction whether w (2, I, G) identically vanishes or not is independent

of the choice of an exhausticn {D,} (» =0, 1, 2, ...) of D. Cf. NEVANLINNA [6],
p. 119.

3 NEVANLINNA [6], p. 120.

¢ NEVvANLINNA [6], p. 126. Ly

5 NEVANLINNA [6], p. 135.

¢ Cf. NEVANLINNA [6], pp. 148—163; also KAMETANT [4].

? NosuIro [6], G. a¥ HArLsTrOM [2], This proof is essentially the same as that
of Evans [1], although Evans’ original thegrem is stated in the case of 3-dimensions.

.
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 of P(2), lettmgzvaryonE i. e., M,,= max|P(z)|, and by M, the greatest

3€E 3
lower bound of M, letting » points a,, 4y, .. ., 4, vary on E, i.e., M,,
= inf M,. Then, it is easily shown that M, is the minimum of M,; in
other words, by a suitable choice of af, a‘z’, ..., a3 on E, there exists a

" polynomial : _
- To(2) = (z—a) (z—ad) ... (2—a?)
with maximum modulus M,. Remembering the definition of the trans-

finite diameter 7 (E) of E and the relatlon 7(E) = C(E), we denote by V,,
the maximum of ,

Viz, 29, - . - 2a) = H |ze— 23],
k<A
letting #; (i = 1, 2, . . ., n) vary on E. Let the maximum V, ,; be attained
by # + 1 points &, b,, . . ., b, on E, From

Bos = Vid Bt . oo Baka)
= 11— ) (b b) « -« (or—Bas)|* VB B+ Buv)

 foliows
[(Br— Bg) (by—bg) . . . (by—bpsd)| = M, , _ (5)
for otherw15e there would exist a point 5] € E such that V(by, by, . . ., b, +4)
=< Vb, Dy, ooy Dysy)- By @ cychc change of suffices of b in (5), we have
= (u 1

Vn-f-lglu”’ and- Vin+1 = VH;,
whence follows
ntly . - ; @
: lim V-V,,ﬂ = lim yM, =0,
as 7(E) = C(E) = |
- Consider now the function

- uale) = —log YT @)
=%(10g‘ 1 l+10g_ix_iagt+...

|z—af|

5
=k
#,(2) is clearly a potential defined by a certain distribution of equal point
- masses on E with total mass unity and for every point z on E, u,(z) = m,

where m,, = —log Vﬂ: Since m,, - co, we can find a sequence of integers
{n;}such thatm, = 2/ (5 = 1,2,...). Put Uy(2) = 27 7ua(2) (= 1,2,...).
Then, U,(z) is a potential of distribution of equal point masses on E with
total mass 2-7and evidently U,;(z) = 1on E. Consider ﬁnally the function

u(z) = Z' Uy(e) = lim 3 U(2).

y—>o0f=1

a
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§ 2. Meromorphic functions with a compact set-of essential singularities a

Then, %(z) is a required potential. In fact, it is a potential of positive
mass-distribution on E with total mass unity and hence of the form (4).

At every point zof E, u(z) =+ as u(z) = Z‘ Ujz) = v forall . If

2¢ ¥E and if z has a distance ¢ from E, then clearly u(2) < logl/g

Remark. For convenience, we shall call the potential (2), -
Theorem 1, an Evans-Selberg’s potential. For a given compact set of capa- &
city zero, Evans-Selberg’s potential is not unique (G. AF HALLSTROM [3]). - :

6. For the sequel, it will be convenient to state some properties of
Evans-Selberg’s potential u (). Clearly #(z) is harmonic outside E except
for z = oo and its boundary value at every point of E is +oo. In the
neighborhood of 2 = o, %(2) is of the form -

u(2) = —loglz| —w(2), 6
- wheére o (z) = f log|1 — ¢/z|du (L) is harmonic at z = co. Let v(2) be its
conjugate harmoruc function and put : i :
; w(2) = u(2) + iv(2) . 48 E )
Then the function w (z) is many-valued and regular outside E except for .
z = oo, the infinity being a logarithmic singularity. However the deriva-
tive w'(2) = u,(2) — iu,(z) is obviously single-valued and regular through-
out the domain € E, z = oo being a simple zero-point of #’(z), and has a
singularity at every point of E. Consequently, the many-valuedness of
w (2) arises only in its imaginary part by some additive constants: It is
easy to show that the level curve I'j: #(z) = 4 (—o < 4 < oo) consists
of a finite number of simple closed curves surrounding E, by the minimum
principle of harmonic function, and that the function A — % (2) is no other
than Green's function g(z, o) in the exterior of I';. Thus we see that if

there are p closed curves of I';, then w’(z) has p — 1 finite zero—pomts in
the exterior of I, and moreover that

s Jdv(z) I/‘————ds‘—2n,. g3 ®)

‘where ds denotes the arc length and n the inner normal (see HALL-
STROM [2], pp. 14—17)..
Remark. Recently extensions of the Eva.ns-Selberg theorem and

related theorems have been obtained by Rupin [1], UcaAEr: [1], HONG
[1] and INouE [1].

§ 2. Meromorphic functions with'a compact set of essenual
. singularities of capacity zero
1. At the beginning, we prove ’
Theorem 1. Let E be a compact set of capacity zero and D be a domain
containing E in its interior. Suppose that w = f(z) is a single-valued mero-
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morphic function in D — E and has a transcmdantal singularity ab every
point 2y of E. Then, the cluster setCy_g(f, z,) of f(2) at z = z, ts the whole
w-plane (NEVANLINNA [6]).

- Proof. Obviously we have only to prove that f(z) = u(z) + 4v(2) is
not bounded in any neighborhood of every point z, of E. Otherwise, f(z)
would be bounded in the intersection of D — E with a circular disc (¢):
[z 2| < 7. Describe a simple closed curve I, surrounding 2, in
(D—E)N(c)* and denote by A4 the remaining domain obtained by
excluding E from the interior of I". Let 4% (2) be the harmonic function in
the interior of I', such that %(z) = #(2) on I', and %*(z) be the Evans-
Selberg potential which may be supposed to be positive in (c). Consider

U(z) = u(2) —%(z) —eu*(z) in 4 for any positive number & Then,
clearly U(z) = 0 in 4; hence #(2) < %(2) in A. Similarly %(z) < #(2)
in 4. Thus # () = #(2) in 4. Accordingly z, is a removable singularity for
f(2); this is a contradiction.

Remark. In the proof, we have used only the fact that if a harmonic
function is bounded in a neighborhood of a compact set of capacity zero,

‘this set is removable for the harmonic function. Obviously Theorem 1
remains valid if E is a Painlevé null-set?, i. e. if E consists of 4 B removable
points.

Theorem 2. Let E be a compact set of capacity zero comtained in a
domain D. Suppose that w = f(2) is a single-valued meromorphic function
in D — E which has an essential singularity at every point z, of E. Then,
w = f(2) assumes every value infinitely often in amny neighborhood of z, .
with a possible exceptional set of values of capacity zeva, i. e. € Rp _g(f, 2}
is at most of capacity zero (G. A¥ HALLSTROM [2], KAMETANI [2]).

. Proof. By Theorem 1, Rp_g(f, 2,) is everywhere dense in the w-plane.
Without loss”of "generality, we may suppose that @ = co belongs to

" Rp-g(f, %) Let » be any positive number and (¢) be a circular disc
lz — %z, < 7. Describe a simple closed curve I, surrounding z,, in (D — E)
N (c). Denote by 4, the domain (I") — E, where (I) is the interior of I,
and by 9, the value set of f(2) in 4,. It is easily shown that the compact
set €9,, which is complementary to ®, with respect to the w-plane, does
not contain®any non-degeénerate continuum; i.e. ¥9, is totally dis-
connected. We show that ¥9, is of capacity zero. Otherwise, there would
exist a non-constant bounded harmonic function U(w) in ®,. We

1 As E is of capacity zero, E is of linear measure zero. Consequently we can
adopt as I" a circumference |5 — | = g for almost every positive number ¢ < 7.
But our selection of I” depends upon only the property that E is totally discotinected.

? If there exists no non-constant single-valued bounded analytic function in the
exterior of a totally disconnected compact set E; then E is called a Painlevé null-set
or said to consist of 4 B removable points. It is easily proved that if E is of linear
measure zero, then E is a Painlevé null-set (AHLFoRs [3], AHLFORS-BEURLING [1]).
For related theorems, cf. A. S. Brsicovircr [1], CARTWRIGHT [3].
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