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This book has grown out of a set of ]ecturé~notes.preﬁgi€d originally for a
NATO Summer School on "The Theory and Practice of Systems Modelling and Identification”
held between the 17th and 28th July, 1972 at the Ecole Nationale Superieure de
L'Aeronautique et de L'Espace. Since this time I have given similar lecture courses
in the Control Division of the Engineering Department, University of Cambridge;
Department of Mechanical Engineering, University of Western Australia; the University
of Ghent, Belgium (during the time I held the IBM Visiting Chair in Simulation for
the month of January, 1980), the Australian National University, and the Agricultural
University, Wageningen, the Netherlands. As a result, I am grateful to all the reci-
pients of these lecture courses for their help in refining the book to its present
form; it is still far from perfect but I hope that it will help the student to
become acquainted with the interesting and practically useful concept of recursive
estimation.  Furthermore, I hope it will stimulate the reader to further study the
theoretical aspects of the subject, which are not dealt with in detail in the
present text. The book is primarily intended to provide an introductory set of
lecture notes on the subject of recursive estimation to undergraduate/Masters
students.  However, the book can also be considered as a "theoretical background"
handbook for use with the CAPTAIN Computer Package. This 'Computer Aided Program
for Time Series Analysis and the Identification of Noisy Systems' was originally
conceived by the author in the mid nineteen sixties and was developed initially in
the Control Division of the Engineering Department at the University of Cambridge in
1971 on the basis of recursive algorithms developed during the previous six years
(Young et aZ., 1971; Shellswell, 1971). A command mode version of the package was
developed as an alternative to the original interactive, conversational mode version,
by the Institute of Hydrology in England (Venn and Day, 1977) and in this form, it
has been acquired by the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) of Australia for use in its CSIRONET nationwide computing system (Freeman,
1981). More recently, advanced versions of CAPTAIN, based on some of the more
sophisticated procedures discussed in the present book, have been developed by the
author and his colleagues at the Centre for Resource and Environmental Sciences,
(CRES), ANU, for use in the UNIVAC 1100 series computer. A more comprehensive,
"user friendly" version of the package is currently under development by the author
and Mr. John Hampton in the Department of Environmental Sciences, University of
Lancaster, Lancaster, LA1 4YQ, England. This version will be available initially
for use on the VAX 11/780 computer. Also a microcomputer version MICROCAPTAIN has
recently been developed by the author (see Epilogue) for use on the APPLE II and
EPSON HX-20 microcomputers. Any enquiries about any of these CAPTAIN programs
should be addressed to me at the above address.
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1 Introduction

Nous traiterous particuliérement le
probléme suivant, tant a cause de son utilite
pratique que de la simplicité de la solution

K.F. Gauss
Méthode des Moindres Carres
Translation by J. Bertrand, 1855.

The concept of Teast squares estimation is inextricably linked with the name
of Karl Friedrick Gauss. Although Legendre was responsible for the first published
account of the theory in 1805 and, indeed, first coined the term "least squares", it
was Gauss who developed the method into a statistical tool, embedding it within a
statistical framework involving a probabilistic treatment of observational errors.

Gauss's first published exposition on least squares appeared in his famous
Theoria Motus Corporum Coelestum which appeared in 1809 when he was 31 years of age.
But, as D.A. Sprott (1978) has pointed out recently in his excellent review of Gauss's
contributions to statistics, the basic ideas were most probably formulated while he
was still in his twenties.

In the Theoria Motus, the discussion on least squares appears in relation to
an important practical problem; namely the estimation of the six constant coefficients
or "parameters" that determine the elliptical orbit of a planetary body, on the basis
of n > 6 observations. His second exposition on the subject was presented in a series
of papers (1821, 1823, 1826) which were collected together under the title Theoria
Combinationis Erroribus Minimum Obnoxiae. Here he abandoned the previous "inferential®
treatment delineated in the Theoria Motus and concentrated on a "decision theoretic"
approach, in which he restricted attention to estimates that are a linear function of
the observations. And it was here that he presented perhaps his most famous statisti-
cal theorem that, Among all linear error-comsistent estimates, the least squares
estimate has minimum mean square error.

But our current interest lies elsewhere in the Theoria Combinationis: in a
quite short and apparently Tittle known section of some five pages (Bertrand, 1855,

p. 53-58; Trotter, 1957, p. 67-72) Gauss shows how it is possible to find the
changes which the most likely values of the unknowms undergo when a new equation
(observation) is adjoined and to determine the weights of these new determinations.
In other words, and to use more contemporary terminology, he developed an algorithm
for sequentially or recursively updating the least squares parameter estimates on
receipt of additional data.

Bertrand's French translation of Gauss's work appeared in 1855 under the
appropriate title "Méthode des Moindres Carrés" and was authorised by Gauss himself.
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This translation, together with a commentary provided by the present author, appears
in Appendix 2. In addition to its importance in historical terms, Gauss's analysis
is interesting because it demonstrates the elegance of his approach and the power

of his mind: without the advantages of matrix algebra which, as we shall see,
considerably simplify the derivation, Gauss was able to obtain the recursive least
squares algorithm with consummate ease.

Gauss's analysis represents the birth of recursive least squares theory; a
theory so much ahead of its time that it would 1ie dormant for almost a century and
a half before it was rediscovered on two separate occasions: first by the statisti-
cian R.L. Plackett in 1950; and then later and in a more sophisticated form, as the
core of the linear filtering and prediction theory evolved by the control and systems
theorist R.E. Kalman (1960).

Not surprisingly, perhaps, Plackett's paper went almost unnoticed in the pre-
computer age of the early nineteen fifties. Harking back to Gauss, he re-worked the
original results in more elegant vector-matrix terms and developed an algorithm for
the general case in which additional observations occur in sets S > 1. In the
present book, 1ike Gauss, we restrict the analysis largely to S = 1, although the
extension to S > 1 is straightforward and is discussed in certain special cases.

Kalman's results, almost certainly obtained without knowledge of either
Gauss's or Plackett's prior contributions, were developed within the context of
state variable estimation and filter theory, using an argument based on orthogonal
projection. Not only were Kalman's results mathematically elegant in providing a
computationally straightforward solution to the optimal filtering problem, which had
a number of advantages over the earlier Wiener solution (Wiener, 1949), but they also
had good potential for practical application. Not surprisingly, therefore, they
caused quite a revolution in the automatic control and systems field providing,
during the next ten years, a rich source of research material for control and systems
analysts. Subsequently, the term Xalman Filter has become widely used, not only in
the academic and industrial world of automatic control but also in other disciplines
such as statistics and economics.

It is now well known that the Kalman filter estimation algorithm can be
derived in various ways; via orthogonal projection, as in Kalman's exposition; as
well as from the standpoint of maximum 1ikelihood or Bayesian estimation. It can
also be developed in various different forms, for application to both discrete
(Kalman, 1960) and continuous (Kalman and Bucy, 1961) time-series. But,in all its
forms, it has had a profound effect on data processing during the last two decades,
being used in applications ranging from trajectory and orbit estimation to the fore-
casting of economic time-series. )

Sprott (1978) has questioned whether the Kalman filter is really a signifi-
cant 'development' of the Gauss-Plackett recursive least squares algorithm. While
it is true that the Gauss-Plackett recursion formulae are an essential aspect of the



Kalman filter equations, it is also clear, as we shall see in this book, that Kalman
considerably extended the theory both to allow for the estimation of time-variable
parameters or states, and to handle the analysis of statistically non-stationary
time-series. Nevertheless the Gauss-Plackett recursion is undoubtedly the central
component of the Kalman filter and the basis of most other recursive least squares
algorithms.  Thus a good understanding of its function in a data processing sense
is an essential pre-requisite for the practical application of the algorithm. It
is the provision of such understanding, therefore, which is one of the primary aims
of this book.

As Gauss pointed out so succinctly in the quotation at the beginning of this

chapter, recursive least squares theory is both simple and useful. Here we will
exploit this simplicity and take the reader gently through the mysteries of the
subject, avoiding wherever possible undue rigour and complexity. In the spirit of

Gauss, we will concentrate on mathematical analysis which, while it is often alge-
braic in form, also has sufficient statistical content to ensure that the reader is
fully aware of the important statistical aspects of the results. We will, however,
allow ourselves one luxury not available to Gauss and simplify the analysis still
further by resort to matrix algebra, assuming that the reader is already acquainted
with such analysis; has access to a good text on the subject; or finds that the
background notes in Appendix 1 of the book provide sufficient revision.

Finally, to emphasize the practical utility of the various recursive least
squares algorithms which will emerge during the analysis, we will provide a number of
simulation and practical examples, with applications which range from the man-made
world of engineering to the more natural world of ecology and the environment. Many
other applications in diverse areas, from economics to hydrodynamics, are discussed
in a variety of technical papers produced by the author and his colleagues over the
past few years and these are either referred to in the text or listed in the biblio-
graphy. Some more recent references are discussed in a short Epilogue at the end of
the book.

The text is divided into two major parts: the first is primarily concerned
with the estimation of constant or time-variable parameters in general models which
are linear-in-the-parameters; the second shows how the procedures developed in the
first part can be modified to handle the analysis of stochastic time-series and so
provide algorithms for the recursive estimation of parameters and states in stochastic
dynamic systems. In sympathy with the introductory nature of this book, there has
been a conscious attempt to simplify the mathematical analysis as much as possible,
particularly in the early chapters, so as to enhance the readability of the book and
avoid an overly esoteric presentation. For the reader unfamiliar with some of the
mathematics used in the book, Appendix 1 provides background notes, not only on
matrix algebra but also on probability and statistics, as well as some very simple
concepts in dynamic systems. In all cases, the results in Appendix 1 are chosen



