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Preface

This book is devoted to some basic stochastic partial differential equations, in
particular reaction-diffusion equations, Burgers and Navier—Stokes equations per-
turbed by noise.

Particular attention is paid to the corresponding Kolmogorov equations
which are elliptic or parabolic equations with infinitely many variables.

The aim of the book is to present the basic elements of stochastic PDEs in
a simple and self-contained way in order to cover the program of one year PhD
course both in Mathematics and in Physics.

The needed prerequisites are some basic knowledge of probability, functional
analysis (including fundamental properties of Gaussian measures) and partial dif-
ferential equations.

This book is an expansion of a course given by the author in 1997 at the
“Center de Recerca Matematica” in Barcelona (see [30]), which I thank for the
warm hospitality.

I wish also to thank B. Goldys for reading the manuscript and making several
useful comments.

This work was also supported by the research program “Analisi e controllo di
equazioni di evoluzione deterministiche e stocastiche” from the Italian “Ministero
della Ricerca Scientifica e Tecnologica”.

Pisa, October 2004 Giuseppe Da Prato
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

We are here concerned with a stochastic differential equation in a separable Hilbert
space H,

dX(t,z) = (AX(t,z) + F(X(t,z)))dt+ BdW(t), t>0, z € H,
(1.1)
X(0,z) =z, z€H.

Here A: D(A) C H — H is the infinitesimal generator of a strongly continuous
semigroup e‘4 in H, B is a bounded operator from another Hilbert space U and
H, F: D(F) C H — H is a nonlinear mapping and W (t), t > 0, is a cylindrical
Wiener process in U defined in some probability space (€2, #,P), see Chapter 2
for a precise definition.

In applications equation (1.1) describes the evolution of an infinite dimen-
sional dynamical system perturbed by noise (the system being considered “iso-
lated” when F = 0).

In this book we shall consider several stochastic partial differential equations
which can be written in the form (1.1). In each case we shall first prove existence
and uniqueness of a mild solution. A mild solution of equation (1.1) is a mean
square continuous stochastic process, adapted to W (t), such that X (t,z) € D(F)
for any ¢t > 0 and

t
X(t,2) = etz + / eIAR(X (s,2))ds + Wa(t), >0,  (1.2)
0

where W4(t) is the stochastic convolution defined by

t
WA(t):/ e ABAW (s), t>0. (1.3)
0
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Moreover, we shall study several properties of the transition semigroup P; defined
by (M
Pt(P(I) = ]E[W(X(tv 1‘))], pE Bb(H)7 t>0,reH, (14)

as Feller and strong Feller properties and irreducibility. We recall that P, is Feller
if Py is continuous for all £ > 0 and any continuous and bounded function ¢,
strong Feller if Pyp is continuous for all ¢ > 0 and all ¢ € By(H). Moreover, P,
is trreducible if P1;(xz) > 0 for all z € H and all open sets I, where 1; is the
characteristic function of I (2,

To study asymptotic properties of the transition semigroup P; an important
tool is provided by invariant measures. A Borel probability measure v in H is said

to be invariant for P, if
/ Pypdy = / pdv (1.5)
H H

for all continuous and bounded functions ¢: H — R.

If P, is irreducible, then any invariant measure v is full, that is we have
v(B(z,r)) > 0 for any ball B(z, ) of center z € H and radius r. In fact from (1.5)
it follows that

v(B(z,r)) = /HPtl[(a:)l/(dx) > 0.

If P, is at the same time irreducible and strong Feller, then there is at most one
invariant measure in view of the Doob theorem, see Theorem 1.12 (),

We shall prove, under suitable assumptions, existence (and in some cases
uniqueness) of an invariant measure v. As it is well known, this allows us to
extend uniquely P; to a strongly continuous semigroup of contractions in L?(H,v)
(still denoted P;). We shall denote by K its infinitesimal generator.

Particular attention will be paid to describing the relationship between K,
and the concrete differential operator K defined by

Kop(@) = 3 T [CD%p(@)] + (Az + F(z), Dp(z)), ¢ € 6a(H),  (16)

where Tr denotes the trace, C = BB* (B* being the adjoint of B), and D denotes
the derivative with respect to z. Moreover, &4 (H) is the linear span of all real and
imaginary parts of exponential functions @y,

on(z) =™ zecH he D(AY),

where A* is the adjoint of A. It is easy to see that the space &4 (H) is dense in
L*(H,v). The reason for taking h € D(A*) is that this fact is necessary in order

<1)Bb(H ) is the space of all bounded and Borel real functions in H.

@lpx)=1ifzel,1/(z)=0ifz ¢ I.

(3) Another powerful method to prove the uniqueness of an invariant measure is based on cou-
pling, see [54], [74], [73], [68], [40].
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that Kopp be meaningful. In fact, if pp(z) = eih:%) we have
1 .
Kopn(z) = — (5 |CY/2R|? + iz, A*h) + z(F(a:),h)) on(x), =€ H.

So, Ko, belongs to L2(H,v) provided
z + (z, A*h) and = — (F(z), h) € L*(H,v). (1.7)

It is not difficult, by using the It6 formula, to show that K- is an extension
of K. More difficult (in some cases still an open problem) is to show that K is
the closure of Ky or, equivalently, that &4(H) is a core for K5. When this is the
case, one can prove existence and uniqueness of a strong solution (in the sense of
Friedrichs) of the Kolmogorov equation

Mo — Kop = 1, (1.8)

where A > 0 and f € L?(H,v) are given. This means that for any A > 0 and any
f € L%(H,v), there exists a sequence {p,} C &4 (H) such that

lim ¢, — ¢, lim (\p, — Kop,) — f in L*(H,v).

n—0o0 n—0o0
This result has several important consequences. In particular the following inte-

gration by parts formula (called in French the “ identité du carré du champs”)
holds,

1
/ Kyppdv=—= / |B*Dy|?dv, ¢ € D(K>). (1.9)
H 2 H

Let us give an idea of the proof. Since we know that &4(H) is a core for Ko,
it is enough to prove (1.9) for ¢ € &4(H). In this case one can check, by a
straightforward computation, the identity

Ko(9®) = 2Kop ¢ + |B*Do|*.

Now, since v is invariant, we have that [, Ko(p?)dv = 0, and so (1.9) follows.
Identity (1.9) implies that if ¢ € D(K3), then B* Dy is well defined, so that
one can study perturbation operators of the form

¢ — Ko+ (G, B*Dy),

with G: H — H bounded Borel. Some other interesting consequences of (1.9),
such as Poincaré and log-Sobolev inequalities, will be presented later when we
study specific equations.

We shall first consider the important special case when F' = 0 (corresponding
in the applications to the absence of interactions). In this case we shall write (1.1)

as
dZ(t,z) = AZ(t,z)dt + BdW(t), t>0, z € H,
(1.10)
Z0,z) =z, z€H.
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The solution Z(t,x) is called the Ornstein—Uhlenbeck process. The corresponding
transition semigroup will be denoted by

Rip(z) = Elp(Z(t,z))], ¢ € By(H).

If the operator A is of negative type (9 it is not difficult to show that there exists
a unique invariant measure p for R,. More precisely, u is the Gaussian measure
with mean 0 and covariance operator

Q= / e!ABB*etY dt.
0

We shall denote by L, the infinitesimal generator of the extension of R; to L?(H, p)
and shall prove that L is the closure of the Kolmogorov operator

Lop(e) = 3 Tr [CD%(@)] + (2, A'Dp(@), € E4(H).  (111)

However, it is useful to study the semigroup R; also in other spaces as in the
space Cyp(H) of all uniformly continuous and bounded real functions in H. Here
the semigroup is not strongly continuous but its infinitesimal generator L can be
defined, see [17], as the unique closed operator L in Cy(H) such that

A=L) ' f(x) = /00 e MR, f(z)dt, z€ H, \>0, f e Cy(H). (1.12)
0

Then we shall consider the case when F' is Lipschitz continuous. The results
proved here will be useful to study by approximation equations with irregular
coefficients.

Finally, we shall try to prove an explicit formula relating the invariant mea-
sures p and v of equations (1.1) and (1.10) respectively. More precisely, we shall
show (under suitable assumptions), following the recent result in [35], that

/fd,u:/ fdu+/<F,DL—1f>dy, f € By(H), (1.13)
H H H

where L is the Ornstein-Uhlenbeck generator defined by (1.12). From (1.13) it
follows that v is absolutely continuous with respect to .

This book has an elementary character. For the sake of simplicity, we have
only considered equations with additive noise and we have only studied Kol-
mogorov equations coming from some stochastic partial differential equations such
as reaction-diffusion equations, Burgers equation and 2D-Nawvier—Stokes equations.

(4)That is if there exists M > 0 and w < 0 such that llet4]| < Me=«* for all t > 0.
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The same method could be applied to other equations such as the wave equation
(6], [26], [27], [87], [88], the Cahn-Hilliard equation [31] and the Stefan problem
7].

d We mention that Kolmogorov equations can also be studied by purely an-
alytical methods, see the monograph [51] and references therein. This method is
important when one is not able to solve (1.1), see [34], [43], [44], [39).

Also in concrete equations we have not presented the more general results
of the literature, which in some cases are very technical but we have used simple
situations as examples.

We end this chapter by giving some preliminaries and recalling some results
which will be used in what follows.

1.2 Preliminaries

In this book H represents a separable Hilbert space (inner product (-, -), norm |- |)
and L(H) the Banach algebra of all linear continuous operators from H into H
endowed with the norm

|T|| = sup{|Tz|; € H, |[z| =1}, T € L(H).
For any T' € L(H), T* is the adjoint operator of T. Moreover,
YH)={TeLH): T=T*}
and

LY(H)={T € X(H) : (Tz,z) >0, z,ye H}.

1.2.1 Some functional spaces

In this section H and U represent separable Hilbert spaces.

e By(H;U) is the Banach space of all bounded and Borel mappings ¢: H — U,
endowed with the norm

llello = sup [p(z)], ¢ € Cy(H).
z€H

e Cy(H;U) is the closed subspace of By,(H;U) consisting of all uniformly con-
tinuous and bounded mappings from H into U. If U = R we set By(H;U =
Bb(H) and Cb(H; U) = Cb(H)

e Cj(H) is the space of all uniformly continuous and bounded functions
¢: H — R which are Fréchet differentiable on H with uniformly contin-
uous and bounded derivative Dp. We set

lellr = llello + sup |De(z)|, ¢ € CL(H).
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If p € C{(H) and = € H, we shall identify Dy(z) with the unique element
h of H such that
Dy(z)y = (h,y), ye€H.

e CZ(H) is the subspace of C{(H) of all functions ¢: H — R which are twice
Fréchet differentiable on H with uniformly continuous and bounded second
derivative D%p. We set

lellz = llell + 1 ID*p(z)ll, ¢ € Cy(H).

If p € C3(H) and z € H, we shall identify D?¢(z) with the unique linear
operator T € L(H) such that
Dy(x)(y, 2) = (Ty,2), y,z € H.

For any k € N, CF(H) is defined in a similar way. We set finally
o0
Cyo(H) = () CE(H).
k=1

o CY'(H) is the subspace of Cy(H) of all Lipschitz continuous functions.
C’g "1(H) is a Banach space with the norm

o
el = ligho +sup { V=000, oy e b1 24}, e cpiim)

e C,'(H) is the space of all functions ¢ € C}(H) such that Dy is Lipschitz
continuous. C’; "'(H) is a Banach space with the norm

|Dp(z) — Dop(y)|
|z -yl

ol = ||flll+sup{ T xaey}, o € CI\(H),

We recall that CZ(H) is not dense in C,(H), see [89]. The following result
was proved in [75].

Theorem 1.1. C,"'(H) is dense in Cy(H).

We finally consider functions having (at most) quadratic growth. We denote
by Ch2(H) the space of all functions ¢: H — R such that the mapping

p(z)

H R
T P T I P

belongs to Cy(H). Ch2(H), endowed with the norm

o)
Pllb,2 = Sup )
I¥llez = 200 1+ fap
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is a Banach space.
Moreover we shall denote by C} ,(H), the space of all continuously differen-
tiable mappings ¢ : H — R of Cp 2(H)such that
| Do ()|

=sup ———5 < +00
[(P]I,Q zeg 1+ |.1'|2

1.2.2 Exponential functions

We are here concerned with the set &(H) of all ezponential functions, defined as
the span of all real and imaginary parts of functions,

on(x): =@M z heH.

&(H) is an agebra with the usual operations.

The following approximation result of continuous functions by exponential
functions will be useful in what follows. It is easy to see that the closure of &(H)
in Cy(H) does not coincide with Cy(H) ). So we shall prove only a pointwise
approximation, see [51].

Proposition 1.2. For all p € Cy(H), there ezists a two index sequence {¢pn, n,} C
&(H) such that

(©) llen,nallo < llollo,

(i) lim lim @, n,(z) =¢(z), z€ H.

n]1—00 N2 —00

Notice that we cannot replace {¢n, »,} with a sequence by a diagonal ex-
traction procedure due to the pointwise character of the convergence.

Proof. We first assume that H = R% with d € N. Then for any n € N there exists
¥n € Cp(R?) with the properties:

(i) 9n is periodic with period n in all its coordinates.
(i) ¥n(z) = p(z) for all z € [-n + 1/2,n — 1/2]4.
(iii) [[¥nllo < llllo-
Clearly v,(z) — ¢(z) for all z € R Moreover, by using Fourier series, we can
find a sequence {¢,} in &(H), close to {¢,} and fulfilling (i) and (ii).

Let now H be infinite dimensional, {ex} a complete orthonormal system in
H, and for any m € N let P, be the projector on the linear space spanned by

{e1,.-.,em},
m

P,z = Z(z,ej)ej, x € H.
j=1

()1t is the space of all almost periodic functions in H.
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Given ¢ € Cy(H) and n; € N, let us consider the function
H - R, z- @(Py ).

By the first part of the proof, for each n; € N, there exists a sequence {@,, n,} C
&(H) such that limy, ,co Pny n, () = @(Pn,z) for all z € H, and ||@n, n,llo <
ll¢llo- Therefore

hm hm <107111,77-2 (Z’) = SD(I)7

M1 —00 Ny —00

for all z € H. O

Proposition 1.3. For all p € Cy3(H) there exists a two index sequence {@n, n,} C
&(H) such that:

©) IPnsmalloz < lolloa:
(i) lm @, n(2) = p(@), «eH.

n—oo

Proof. Let first H = R% and set
p(z)
. H.
b(@) =7 T eE Z€
By Proposition 1.2 there exists a sequence {¢,} C &(H) such that

@) l¥nllo < l1¥llo = lllls,2,
(ii) nli’rgo Yn(z) =¢(z), z € H.
Setting

d
on(z)y =1+ Z (nsin(z;/n))*, = eR?
i=1

we have ¢, € E4(H), ||¢nlls,2 < |l¢lls,2 and nanolo on(z) = (z), z€ H. If H is

infinite dimensional we proceed as in the second part of the proof of Proposition
1,2, a

1.2.3 Gaussian measures

Let L,(H) be the Banach space of all trace class operators in H endowed with the

norm
T =Tr vTT*, T € Li(H),

where Tr represents the trace. We set L (H) = L, (H) N L*(H). We recall that a
linear operator Q € Lt (H) is of trace class if and only if there exists a complete
orthonormal system {e;} in H and a sequence of nonnegative numbers {\;} such
that

Qek = )\kek, keN,
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and
oo
TrQ:= ) A < +oo.
k=1

For any a € H and @ € LT (H) we define the Gaussian probability measure N0
in H by identifying H with ¢2 ) and setting

Na,Q = H Nak’)\k, ar = (a,ek), k e N.
k=1

In this way the measure N, g is defined on the product space R® of all real
sequences, but it is concentrated on ¢? (that is u(¢2) = 1) since, thanks to the
monotone convergence theorem, we have

o0 o0
/ |z|2: N, (dz) = Z/ TiN,, 0, (dzy) = Z()\k +a3) < +o0.
Roo k1 /R

k=1

If a = 0 we shall write N, = Ng for brevity. We shall always assume Ker
Q = {0} in what follows.
If H is n-dimensional and det Q > 0, we have

N, o(dz) = (2m)™/%(det Q)12 =2 (@ (@—a)==a) gp 1 c | (1.14)
Let us list some useful identities. They are straightforward when H is n-

dimensional and can be easily proved in the general case letting n — oco. For
1= N, q we have

/H |z|*u(dz) = Tr Q + af?, (1.15)

/H (@, R)u(dz) = (a,h), he H, (1.16)

/H(x —a,h)(z — a,k)u(dz) = (Qh, k), h,k € H, (1.17)
/H e @M y(dx) = el g3 (@A) e . (1.18)

The range Q'/?(H) of Q'/? is called the Cameron-Martin space of Ng. If H
is infinite dimensional, Q'/2(H) is dense in H but different from H and it is
important to notice that

No(Q2(H)) =o. (1.19)

(6)¢2 is the space of all sequences {z} of real numbers such that 2|2 =372, |zk]? < +oo.



