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Preface

Vigilant: alertly watchful, especially to avoid danger

Anyone browsing this book—or its predecessor, High Performance Web Sites—under-
stands the dangers of a slow web site: frustrated users, negative brand perception,
increased operating expenses, and loss of revenue. We have to constantly work to make
our web sites faster. As we make progress, we also lose ground. We have to be alert for
the impact of each bug fix, new feature, and system upgrade on our web site’s speed.
We have to be watchful, or the performance improvements made today can easily be
lost tomorrow. We have to be vigilant.

Vigil: watch kept on a festival eve

According to the Latin root of vigil, our watch ends with celebration. Web sites can
indeed be faster—dramatically so—and we can celebrate the outcome of our care and
attention. It’s true! Making web sites faster is attainable. Some of the world’s most
popular web sites have reduced their load times by 60% using the techniques described
in this book. Smaller web properties benefit as well. Ultimately, users benefit.

Vigilante:' a self-appointed doer of justice

It’s up to us as developers to guard our users’ interests. At your site, evangelize per-
formance. Implement these techniques. Share this book with a coworker. Fight for a
faster user experience. If your company doesn’t have someone focused on performance,
appoint yourself to that role. Performance vigilante—I like the sound of that.

How This Book Is Organized

This book is a follow-up to my first book, High Performance Web Sites (O’Reilly). In
that book, I lay out 14 rules for better web performance:

* Rule 1: Make Fewer HTTP Requests

* Rule 2: Use a Content Delivery Network
* Rule 3: Add an Expires Header

* Rule 4: Gzip Components
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e Rule 5: Put Stylesheets at the Top

¢ Rule 6: Put Scripts at the Bottom

e Rule 7: Avoid CSS Expressions

» Rule 8: Make JavaScript and CSS External

e Rule 9: Reduce DNS Lookups

* Rule 10: Minify JavaScript

* Rule 11: Avoid Redirects

¢ Rule 12: Remove Duplicate Scripts

* Rule 13: Configure ETags

¢ Rule 14: Make Ajax Cacheable
I call them “rules” because there is little ambiguity about their adoption. Consider these
statistics for the top 10 U.S. web sites” for March 2007:

* Two sites used CSS sprites.

« 26% of resources had a future Expires header.

*» Five sites compressed their HTML, JavaScript, and CSS.

* Four sites minified their JavaScript.
The same statistics for April 2009 show that these rules are gaining traction:

* Nine sites use CSS sprites.

* 93% of resources have a future Expires header.

* Ten sites compress their HTML, JavaScript, and CSS.
* Nine sites minify their JavaScript.

The rules from High Performance Web Sites still apply and are where most web com-
panies should start. Progress is being made, but there’s still more work to be done on
this initial set of rules.

But the Web isn’t standing still, waiting for us to catch up. Although the 14 rules from
High Performance Web Sites still apply, the growth in web page content and Web 2.0
applications introduces a new set of performance challenges. Even Faster Web Sites
provides the best practices needed by developers to make these next-generation web
sites faster.

The chapters in this book are organized into three areas: JavaScript performance
(Chapters 1-7), network performance (Chapters 8-12), and browser performance
(Chapters 13 and 14). A roundup of the best tools for analyzing performance comes in
the Appendix.

" AOL, eBay, Facebook, Google Search, Live Search, MSN.com, MySpace, Wikipedia, Yahoo!, and YouTube,
according to Alexa.
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Six of the chapters were written by contributing authors:

* Chapter 1, Understanding Ajax Performance, by Douglas Crockford

* Chapter 2, Creating Responsive Web Applications, by Ben Galbraith and Dion
Almaer

s Chapter 7, Writing Efficient JavaScript, by Nicholas C. Zakas

* Chapter 8, Scaling with Comet, by Dylan Schiemann

* Chapter 9, Going Beyond Gzipping, by Tony Gentilcore

* Chapter 10, Optimizing Images, by Stoyan Stefanov and Nicole Sullivan

These authors are experts in each of these areas. I wanted you to hear from them
directly, in their own voices. To help identify these chapters, the name(s) of the con-
tributing author(s) are on the chapter’s opening page.

JavaScript Performance

In my work analyzing today’s web sites, I consistently see that JavaScript is the key to
better-performing web applications, so I've started the book with these chapters.

Douglas Crockford wrote Chapter 1, Understanding Ajax Performance. Doug describes
how Ajax changes the way browsers and servers interact, and how web developers need
to understand this new relationship to properly identify opportunities for improving
performance.

Chapter 2, Creating Responsive Web Applications, by Ben Galbraith and Dion Almaer,
ties JavaScript performance back to what really matters: the user experience. Today’s
web applications invoke complex functions at the click of a button and must be eval-
uated on the basis of what they’re forcing the browser to do. The web applications that
succeed will be written by developers who understand the effects of their code on
response time.

I wrote the next four chapters. They focus on the mechanics of JavaScript—the best
way to package it and load it, and where to insert it in your pages. Chapter 3, Splitting
the Initial Payload, describes the situation facing many web applications today: a huge
JavaScript download at the beginning of the page that blocks rendering as well as further
downloads. The key is to break apart this monolithic JavaScript for more efficient
loading.

Chapters 4 and 5 go together. In today’s most popular browsers, external scripts block
everything else in the page. Chapter 4, Loading Scripts Without Blocking, explains how
to avoid these pitfalls when loading external scripts. Loading scripts asynchronously
presents a challenge when inlined code depends on them. Luckily, there are several
techniques for coupling inlined code with the asynchronous scripts on which they de-
pend. These techniques are presented in Chapter 5, Coupling Asynchronous Scripts.
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Chapter 6, Positioning Inline Scripts, presents performance best practices that apply to
inline scripts, especially the impact they have on blocking parallel downloads.

I think of Chapter 7, Writing Efficient JavaScript, written by Nicholas C. Zakas, as the
complement to Doug’s chapter (Chapter 1). Whereas Doug describes the Ajax land-
scape, Nicholas zooms in on several specific techniques for speeding up JavaScript.

Network Performance

Web applications aren’t desktop applications—they have to be downloaded over the
Internet each time they are used. The adoption of Ajax has resulted in a new style of
data communication between servers and clients. Some of the biggest opportunities for
growth in the web industry are in emerging markets where Internet connectivity is a
challenge, to put it mildly. All of these factors highlight the need for improved network
performance.

In Chapter 8, Scaling with Comet, Dylan Schiemann describes an architecture that goes
beyond Ajax to provide high-volume, low-latency communication for real-time appli-
cations such as chat and document collaboration.

Chapter 9, Going Beyond Gzipping, describes how turning on compression isn’t enough
to guarantee optimal delivery of your web site’s content. Tony Gentilcore reveals a
little-known phenomenon that severely hinders the network performance of 15% of
the world’s Internet users.

Stoyan Stefanov and Nicole Sullivan team up to contribute Chapter 10, Optimizing
Images. This is a thorough treatment of the topic. This chapter reviews all popular
image formats, presents numerous image optimization techniques, and describes the
image compression tools of choice.

The remaining chapters were written by me. Chapter 11, Sharding Dominant Do-
mains, reminds us of the connection limits in the popular browsers of today, as well as
the next generation of browsers. It includes techniques for successfully splitting
resources across multiple domains.

Chapter 12, Flushing the Document Early, walks through the benefits and many gotchas
of using chunked encoding to start rendering the page even before the full HTML
document has arrived.

Browser Performance

Iframes are an easy and frequently used technique for embedding third-party content
in a web page. But they come with a cost. Chapter 13, Using Iframes Sparingly, explains
the downsides of iframes and offers a few alternatives.

Chapter 14, Simplifying CSS Selectors, presents the theories about how complex selec-
tors can impact performance, and then does an objective analysis to pinpoint the
situations that are of most concern.
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The Appendix, Performance Tools, describes the tools that I recommend for analyzing
web sites and discovering the most important performance improvements to work on.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic .
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
and directories

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
and the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

o 5

This icon signifies a tip, suggestion, or general note.
o
‘_@ This icon indicates a warning or caution.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:/fwww.oreilly.com/catalog/9780596522308
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To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http:/iwww.oreilly.com

Using Code Examples

You may use the code in this book in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from this
book does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Even Faster Web Sites, by Steve Souders.
Copyright 2009 Steve Souders, 978-0-596-52230-8.”

Ifyou feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

S = When you see a Safari® Books Online icon on the cover of your favorite
aiarl technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current 1nformat10n Try it
for free at http://my.safaribooksonline.com.
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