R Mg (7EnkR)

O’REILLY"
K% R Steve Souders &

BHEREE (CIP) XuR

FPREMEL: K3/ (%) HEE/R (Souders, S.) .
RENA . —RR . RERFEHRA, 20101

H 4[5 : Even Faster Websites

ISBN 978-7-5641-1934-8

e g T REK — & — 3230 IV . TP393.092
A E 518 CIP B ¥ (2009) %5 205637 5

LR AR TER A R0
BF: 10-2009-250 &

©2009 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2009. Authorized reprint of the original English edition, 2009 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% X & A & O'Reilly Media, Inc. i #& 2009,

EXH AW Ao K F kAR R K 2009, 0¥ 6 BR 60 i BRA 4 1 AT 21k R AU A B AR BT A &
—— O'Reilly Media, Inc. 8§34,

BAFRA . BB GHT, KBTS F SFRF LM XE4,

WM (EENAR)

HIR &Fr: REREFEH R

oo ab. FEREMME2S BR4: 210096
R A T

| hil-. http://press.seu.edu.cn

HFHpfE; press@seu.edu.cn

Bl Ri. $5+h i ELR A BB s &

H A TBTEXR < 980F R 16 A
B0 k. 16 Egk

o B 269 FF

M k. 201041 HEE 1K

ER &K: 201041 A% 1 RENRY

+ 2. ISBN 978-7-5641-1934-8

B ¥ 1~1600 1

E . 4200 ()

A EBEFIRRRAE, HESERERSMKR. Bi% (fEE). 025-83792328

O'Reilly Media, Inc. 9+48

O'Reilly Media, Inc. 2 t#F F7F UNIX, X, Internet f A M A G BB RAH
SISk A R, FEERBELH R AR,

M E:i% 450 (The Whole Internet User's Guide & Catalog) (#41£92 3k E35HTEA
Tt R EEM SOA R 2 —) F GNN (BREAY Internet [TARBE AL YY), FEH
WebSite (% — /S PC Y Web I 55 %4k f) , O'Reilly Media, Inc.—F &b F Internet
KR EIBCATI

W& HERREEY, OReilly Media, Inc. &R EMITENEBHRYE —8—
AHE-RER. 5KkEHITHREIESHREAEL, O'Reilly Media, Inc. RAHEE
HIELF I WS, X {#45 O'Reilly Media, Inc. & T — AL A R FH b H kR 7
MR J5 4. O'Reilly Media, Inc. FiA RIS A SILARTEBR BB, SE R THAR
Wit K%K, OReilly Media, Inc. ;B 7 £ [ERI1EE Bk — AR ZHXM
BB ARER. GWEXR, MAELHSENE, OReilly Media, Inc. (&R 5T b
#HE ., FE2% OReilly Media, Inc. BHEM S U RNV FEAE, Pl O'Reilly
Media, Inc. JiE#H % FEFEEH 2B,

tH hie it BA

W E BB AR B IZ R, AREES A —DEARE R RAFH Y. HE
LB AR R RS NI Tl A 7= . BB HF0 B W LB AR 7 B KRIR M. 2870,
HHENLSURAHE AR BT B 2 R R X BT AR, 24 T H By E N B AN RS — il
TIRESM B A, AR A% BRI E O'Reilly Meida, Inc. JKEEH L, Fb
S5 HIAA R R F AR R RS LT TTRTA B AR EE, LSRR S f
BRI R EERG E. Hd, ZERBHE DR EESES ‘AP ik, H AR

BN WA, Fir 5 1 i 45 88 B X B VAR S AT L B R A B . RHEFALAYRIBEZE A B
FOE BT A B S AN AR R B, ST E AN R B AR R RA Bt B 0HE
EERHEFAOE LRI,

BT R AR BN R B 45, AL

o (ESHEFAY Haskell) (ZENAR)

o (BABBWRERFRY (HEHR)

e (Java Web iR%: B# 5= (EEHIR)
o (HATFEERY (FER)

o (EMPerl LU ALEHEB L FIRY GEEIR)
o (lavaiBBMRE FE Y (FER)

o (BEARHKEEREY (KK

o (Ruby BetEER) (FENAR)

o (EHEMIEY (EENR)

o (ENIFER Cookbook) (FZENRR)

o (flex 5 bison) (FZENAR)

Credits

Even Faster Web Sites contains six chapters contributed by the following authors.

Dion Almaer is the cofounder of Ajaxian.com, the leading source of the Ajax com-
munity. For his day job, Dion coleads a new group at Mozilla focusing on developer
tools for the Web, something he has been passionate about doing for years. He is excited
for the opportunity, and he gets to work with Ben Galbraith, his partner in crime on
Ajaxian and now at Mozilla. Dion has been writing web applications since Gopher, has
been fortunate enough to speak around the world, has published many articles and
a book, and, of course, covers life, the universe, and everything else on his blog at http:
/lalmaer.com/blog.

Douglas Crockford was born in the wilds of Minnesota, but left when he was only
six months old because it was just too damn cold. He turned his back on a promising
career in television when he discovered computers. He has worked in learning systems,
small business systems, office automation, games, interactive music, multimedia,
location-based entertainment, social systems, and programming languages. He is the
inventor of Tilton, the ugliest programming language that was not specifically designed
to be an ugly programming language. He is best known for having discovered that there
are good parts in JavaScript. This was an important and unexpected discovery. He
discovered the JSON (JavaScript Object Notation) data interchange format (http://www
json.org/). He is currently working on making the Web a secure and reliable software-
delivery platform. He has his work cut out for him.

Ben Galbraith is the codirector of developer tools at Mozilla and the cofounder of
Ajaxian.com. Ben has long juggled interests in both business and tech, having written
his first computer program at 6 years old, started his first business at 10, and entered
the IT workforce at 12. He has delivered hundreds of technical presentations world-
wide, produced several technical corferences, and coauthored more than a half-dozen
books. He has enjoyed a variety of business and technical roles throughout his career,
including CEQ, CIO, CTO, and Chief Software Architect roles in medical, publishing,
media, manufacturing, advertising, and software industries. He lives in Palo Alto,
California with his wife and five children.

Xi

Tony Gentilcore is a software engineer at Google. There, he has helped make the
Google home and search results pages lightning fast. He finds that the days seem to fly
by while writing web performance tools and techniques. Tony is also the creator of the
popular Firefox extension, Fasterfox.

Dylan Schiemann is CEO of SitePen and cofounder of the Dojo Toolkit, an open
source JavaScript toolkit for rapidly building web sites and applications, and is an
expert in the technologies and opportunities of the Open Web. Under his guidance,
SitePen has grown from a small development firm to a leading provider of inventive
tools, skilled software engineers, knowledgeable consulting services, and top-notch
training and advice. Dylan’s commitment to R&D has enabled SitePen to be a major
contributor to and creator of pioneering open source web development toolkits and
frameworks such as Dojo, cometD, Direct Web Remoting (DWR), and Persevere. Prior
to SitePen, Dylan developed web applications for companies such as Renkoo, Infor-
matica, Security FrameWorks, and Vizional Technologies. He is a cofounder of Comet
Daily, LLC, a board member at Dojo Foundation, and a member of the advisory board
at Aptana. Dylan earned his master’s in physical chemistry from UCLA and his B.A. in
mathematics from Whittier College.

Stoyan Stefanov is a Yahoo! frontend developer, focusing on web application
performance. He is also the architect of the performance extension YSlow 2.0 and
cocreator of the Smush.it image optimization tool. Stoyan is a speaker, book author
(Object-Oriented JavaScript from Packt Publishing), and blogger at http://phpied.com,
http:/ljspatterns.com, and YUIblog.

Nicole Sullivan is an evangelist, frontend performance consultant, and CSS Ninja. She
started the Object-Oriented CSS open source project, which answers the question, How
do you scale CSS for millions of visitors or thousands of pages? She also consulted with
the W3C for their beta redesign, and she is the cocreator of Smush.it, an image opti-
mization service in the cloud. She is passionate about CSS, web standards, and scalable
frontend architecture for large commercial websites. Nicole speaks about performance
at conferences around the world, most recently at The Ajax Experience, ParisWeb, and
Web Directions North. She blogs at http://stubbornella.org.

Nicholas C, Zakas is the author of Professional JavaScript for Web Developers, Second
Edition (Wrox) and coauthor of Professional Ajax, Second Edition (Wrox). Nicholas
is principal frontend engineer for the Yahoo! home page and is also a contributor to
the Yahoo! User Interface (YUI) library. He blogs regularly at his site, http:/www
.nczonline.net.

xii | Credits

Preface

Vigilant: alertly watchful, especially to avoid danger

Anyone browsing this book—or its predecessor, High Performance Web Sites—under-
stands the dangers of a slow web site: frustrated users, negative brand perception,
increased operating expenses, and loss of revenue. We have to constantly work to make
our web sites faster. As we make progress, we also lose ground. We have to be alert for
the impact of each bug fix, new feature, and system upgrade on our web site’s speed.
We have to be watchful, or the performance improvements made today can easily be
lost tomorrow. We have to be vigilant.

Vigil: watch kept on a festival eve

According to the Latin root of vigil, our watch ends with celebration. Web sites can
indeed be faster—dramatically so—and we can celebrate the outcome of our care and
attention. It’s true! Making web sites faster is attainable. Some of the world’s most
popular web sites have reduced their load times by 60% using the techniques described
in this book. Smaller web properties benefit as well. Ultimately, users benefit.

Vigilante:' a self-appointed doer of justice

It’s up to us as developers to guard our users’ interests. At your site, evangelize per-
formance. Implement these techniques. Share this book with a coworker. Fight for a
faster user experience. If your company doesn’t have someone focused on performance,
appoint yourself to that role. Performance vigilante—I like the sound of that.

How This Book Is Organized

This book is a follow-up to my first book, High Performance Web Sites (O’Reilly). In
that book, I lay out 14 rules for better web performance:

* Rule 1: Make Fewer HTTP Requests

* Rule 2: Use a Content Delivery Network
* Rule 3: Add an Expires Header

* Rule 4: Gzip Components

Xiii

e Rule 5: Put Stylesheets at the Top

¢ Rule 6: Put Scripts at the Bottom

e Rule 7: Avoid CSS Expressions

» Rule 8: Make JavaScript and CSS External

e Rule 9: Reduce DNS Lookups

* Rule 10: Minify JavaScript

* Rule 11: Avoid Redirects

¢ Rule 12: Remove Duplicate Scripts

* Rule 13: Configure ETags

¢ Rule 14: Make Ajax Cacheable
I call them “rules” because there is little ambiguity about their adoption. Consider these
statistics for the top 10 U.S. web sites” for March 2007:

* Two sites used CSS sprites.

« 26% of resources had a future Expires header.

*» Five sites compressed their HTML, JavaScript, and CSS.

* Four sites minified their JavaScript.
The same statistics for April 2009 show that these rules are gaining traction:

* Nine sites use CSS sprites.

* 93% of resources have a future Expires header.

* Ten sites compress their HTML, JavaScript, and CSS.
* Nine sites minify their JavaScript.

The rules from High Performance Web Sites still apply and are where most web com-
panies should start. Progress is being made, but there’s still more work to be done on
this initial set of rules.

But the Web isn’t standing still, waiting for us to catch up. Although the 14 rules from
High Performance Web Sites still apply, the growth in web page content and Web 2.0
applications introduces a new set of performance challenges. Even Faster Web Sites
provides the best practices needed by developers to make these next-generation web
sites faster.

The chapters in this book are organized into three areas: JavaScript performance
(Chapters 1-7), network performance (Chapters 8-12), and browser performance
(Chapters 13 and 14). A roundup of the best tools for analyzing performance comes in
the Appendix.

" AOL, eBay, Facebook, Google Search, Live Search, MSN.com, MySpace, Wikipedia, Yahoo!, and YouTube,
according to Alexa.

xiv | Preface

Six of the chapters were written by contributing authors:

* Chapter 1, Understanding Ajax Performance, by Douglas Crockford

* Chapter 2, Creating Responsive Web Applications, by Ben Galbraith and Dion
Almaer

s Chapter 7, Writing Efficient JavaScript, by Nicholas C. Zakas

* Chapter 8, Scaling with Comet, by Dylan Schiemann

* Chapter 9, Going Beyond Gzipping, by Tony Gentilcore

* Chapter 10, Optimizing Images, by Stoyan Stefanov and Nicole Sullivan

These authors are experts in each of these areas. I wanted you to hear from them
directly, in their own voices. To help identify these chapters, the name(s) of the con-
tributing author(s) are on the chapter’s opening page.

JavaScript Performance

In my work analyzing today’s web sites, I consistently see that JavaScript is the key to
better-performing web applications, so I've started the book with these chapters.

Douglas Crockford wrote Chapter 1, Understanding Ajax Performance. Doug describes
how Ajax changes the way browsers and servers interact, and how web developers need
to understand this new relationship to properly identify opportunities for improving
performance.

Chapter 2, Creating Responsive Web Applications, by Ben Galbraith and Dion Almaer,
ties JavaScript performance back to what really matters: the user experience. Today’s
web applications invoke complex functions at the click of a button and must be eval-
uated on the basis of what they’re forcing the browser to do. The web applications that
succeed will be written by developers who understand the effects of their code on
response time.

I wrote the next four chapters. They focus on the mechanics of JavaScript—the best
way to package it and load it, and where to insert it in your pages. Chapter 3, Splitting
the Initial Payload, describes the situation facing many web applications today: a huge
JavaScript download at the beginning of the page that blocks rendering as well as further
downloads. The key is to break apart this monolithic JavaScript for more efficient
loading.

Chapters 4 and 5 go together. In today’s most popular browsers, external scripts block
everything else in the page. Chapter 4, Loading Scripts Without Blocking, explains how
to avoid these pitfalls when loading external scripts. Loading scripts asynchronously
presents a challenge when inlined code depends on them. Luckily, there are several
techniques for coupling inlined code with the asynchronous scripts on which they de-
pend. These techniques are presented in Chapter 5, Coupling Asynchronous Scripts.

Preface | xv

Chapter 6, Positioning Inline Scripts, presents performance best practices that apply to
inline scripts, especially the impact they have on blocking parallel downloads.

I think of Chapter 7, Writing Efficient JavaScript, written by Nicholas C. Zakas, as the
complement to Doug’s chapter (Chapter 1). Whereas Doug describes the Ajax land-
scape, Nicholas zooms in on several specific techniques for speeding up JavaScript.

Network Performance

Web applications aren’t desktop applications—they have to be downloaded over the
Internet each time they are used. The adoption of Ajax has resulted in a new style of
data communication between servers and clients. Some of the biggest opportunities for
growth in the web industry are in emerging markets where Internet connectivity is a
challenge, to put it mildly. All of these factors highlight the need for improved network
performance.

In Chapter 8, Scaling with Comet, Dylan Schiemann describes an architecture that goes
beyond Ajax to provide high-volume, low-latency communication for real-time appli-
cations such as chat and document collaboration.

Chapter 9, Going Beyond Gzipping, describes how turning on compression isn’t enough
to guarantee optimal delivery of your web site’s content. Tony Gentilcore reveals a
little-known phenomenon that severely hinders the network performance of 15% of
the world’s Internet users.

Stoyan Stefanov and Nicole Sullivan team up to contribute Chapter 10, Optimizing
Images. This is a thorough treatment of the topic. This chapter reviews all popular
image formats, presents numerous image optimization techniques, and describes the
image compression tools of choice.

The remaining chapters were written by me. Chapter 11, Sharding Dominant Do-
mains, reminds us of the connection limits in the popular browsers of today, as well as
the next generation of browsers. It includes techniques for successfully splitting
resources across multiple domains.

Chapter 12, Flushing the Document Early, walks through the benefits and many gotchas
of using chunked encoding to start rendering the page even before the full HTML
document has arrived.

Browser Performance

Iframes are an easy and frequently used technique for embedding third-party content
in a web page. But they come with a cost. Chapter 13, Using Iframes Sparingly, explains
the downsides of iframes and offers a few alternatives.

Chapter 14, Simplifying CSS Selectors, presents the theories about how complex selec-
tors can impact performance, and then does an objective analysis to pinpoint the
situations that are of most concern.

xvi | Preface

The Appendix, Performance Tools, describes the tools that I recommend for analyzing
web sites and discovering the most important performance improvements to work on.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic .
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
and directories

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
and the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

o 5

This icon signifies a tip, suggestion, or general note.
o
‘_@ This icon indicates a warning or caution.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:/fwww.oreilly.com/catalog/9780596522308

Preface | xvii

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http:/iwww.oreilly.com

Using Code Examples

You may use the code in this book in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from this
book does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Even Faster Web Sites, by Steve Souders.
Copyright 2009 Steve Souders, 978-0-596-52230-8.”

Ifyou feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

S = When you see a Safari® Books Online icon on the cover of your favorite
aiarl technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current 1nformat10n Try it
for free at http://my.safaribooksonline.com.

Acknowledgments

I first want to thank the contributing authors: Dion Almaer, Doug Crockford, Ben
Galbraith, Tony Gentilcore, Dylan Schiemann, Stoyan Stefanov, Nicole Sullivan, and
Nicholas Zakas. They’ve made this a special book. Each of them is an expert in his or
her own right. Most of them have written their own books. By sharing their expertise,
they’ve helped create something unique.

wiii | Preface

[want to thank all the reviewers: Julien Lecomte, Matthew Russell, Bill Scott, and Tenni
Theurer. I extend an especially strong thank you to Eric Lawrence and Andy Oram.
Eric reviewed both this book as well as High Performance Web Sites. In both cases, he
provided incredibly thorough and knowledgeable feedback. Andy was my editor on
High Performance Web Sites. More than anyone else, he is responsible for improving
how this book reads, making it flow smoothly from line to line, section to section, and
chapter to chapter.

A special thank you goes to my editor, Mary Treseler. Coordinating a book with mul-
tiple authors is an opportunity that many editors will pass over. I'm glad that she took
on this project and helped guide it from a bunch of ideas to what you're holding in your
hands now.

I work with many people at Google who have a penchant for web performance. Tony
Gentilcore is the creator of Fasterfox (http://fasterfox.mozdev.org/) and the author of
Chapter 9. He’s also my officemate. Several times a day we’ll stop to discuss web per-
formance. Steve Lamm, Lindsey Simon, and Annie Sullivan are strong advocates for
performance who I work with frequently. Other Googlers who have contributed to
what I know about web performance include Jacob Hoffman-Andrews, Kyle Scholz,
Steve Krulewitz, Matt Gundersen, Gavin Doughtie, and Bryan McQuade.

Many of the insights in this book come from my friends outside Google. They know
that if they tell me about a good performance tip, it’s likely to end up in a book or blog
post. These performance cohorts include Dion Almaer, Artur Bergman, Doug Crock-
ford, Ben Galbraith, Eric Goldsmith, Jon Jenkins, Eric Lawrence, Mark Nottingham,
Simon Perkins, John Resig, Alex Russell, Eric Schurman, Dylan Schiemann, Bill Scortt,
Jonas Sicking, Joseph Smarr, and Tenni Theurer. :

['ve inevitably forgotten to mention someone in these lists. I apologize, and want to
thank all of you for taking the time to send me email and talk to me at conferences.
Hearing your lessons learned and success stories keeps me going, It’s important to know
there are so many of us who are working to make the Web a faster place.

Thank you to my parents for being proud to have a son who’s an author. Most impor-
tantly, thank you to my wife and three daughters. I promise to take a break now.

Preface | xix

Table of Contents

Creditse B, i eee s e iiee e e R §
Preface e e xiii
1. Understanding Ajax Performance et e 1
Trade-offs 1
Principles of Optimization 1
Ajax 4
Browser 4
Wow! 5
JavaScript 6
Summary 6

2. (reating Responsive Web Applications veariees veeenss T
What Is Fast Enough? 9
Measuring Latency 10
When Latency Goes Bad 12
Threading 12
Ensuring Responsiveness 13
Web Workers 14

Gears 14
Timers 16
Effects of Memory Use on Response Time 17
Virtual Memory 18
Troubleshooting Memory Issues 18
Summary 19

3. Splitting the Initial Payloadcooiiiiiiiiiiiiiiiiiiin, 21
Kitchen Sink 21
Savings from Splitting 22
Finding the Split 23
Undefined Symbols and Race Conditions 24

Case Study: Google Calendar

Loading Scripts Without Blocking Cerreeees verveee Cereeriees

Scripts Block
Making Scripts Play Nice
XHR Eval
XHR Injection
Script in Iframe
Script DOM Element
Script Defer
document.write Script Tag
Browser Busy Indicators
Ensuring (or Avoiding) Ordered Execution
Summarizing the Results
And the Winner Is

Coupling Asynchronous SCrpts «...uiiieiniiii ittt iieinicaeees

Code Example: menu.js
Race Conditions
Preserving Order Asynchronously
Technique 1: Hardcoded Callback
Technique 2: Window Onload
Technique 3: Timer
Technique 4: Script Onload
Technique 5: Degrading Script Tags
Multiple External Scripts
Managed XHR
DOM Element and Doc Write
General Solution
Single Script
Multiple Scripts
Asynchronicity in the Real World
Google Analytics and Dojo
YUI Loader Utility

Positioning Inline Scriptsccoiiiiiiiiiiinn...

Inline Scripts Block
Move Inline Scripts to the Bottom
Initiate Execution Asynchronously
Use Script Defer
Preserving CSS and JavaScript Order
Danger: Stylesheet Followed by Inline Script

Inline Scripts Aren’t Blocked by Most Downloads

»e

25

27
27
29
29
31
31
32
32
33
33
35
36
38

4
42
44
45
46
47
48
49
50
52
52
56
59
59
60
63
63
65

69
69
70
71
73
73
74
74

vi | Table of Contents

Inline Scripts Are Blocked by Stylesheets 75

This Does Happen 77

7. Writing Efficient JavaScript veeres N Cerrearaens 79
Managing Scope 79
Use Local Variables 81
Scope Chain Augmentation 83
Efficient Data Access 85
Flow Control 88
Fast Conditionals 89
Fast Loops 93
String Optimization 99
String Concatenation 99
Trimming Strings 100
Avoid Long-Running Scripts 102
Yielding Using Timers 103
Timer Patterns for Yielding 105
Summary 107
8. ScalingwithCometcooiiiiiiiiiiii ittt ie i eneeanns 109
How Comet Works 109
Transport Techniques 111
Polling 111
Long Polling 112
Forever Frame 113
XHR Streaming 115
Future Transports 116
Cross-Domain 116
Effects of Implementation on Applications 118
Managing Connections 118
Measuring Performance : 119
Protocols 119
Summary 120
9. GoingBeyond Gzippingccoiiiiiiiiiii i e e 121
Why Does This Matter? _ 121
What Causes This? 123
Quick Review 123
The Culprit 123
Examples of Popular Turtle Tappers 124
How to Help These Users? 124
Design to Minimize Uncompressed Size 125
Educate Users 129

Table of Contents | vii

Direct Detection of Gzip Support

10. OptimizingImagesccvevininnens e eeerareeeriereeraanaes
Two Steps to Simplify Image Optimization
Image Formats

Background
Characteristics of the Different Formats
More About PNG
Automated Lossless Image Optimization
Crushing PNGs
Stripping JPEG Metadata
Converting GIF to PNG
Optimizing GIF Animations
Smush.it
Progressive JPEGs for Large Images
Alpha Transparency: Avoid Alphalmagel.oader
Effects of Alpha Transparency
AlphalmageLoader
Problems with AlphalmageLoader
Progressively Enhanced PNG8 Alpha Transparency
Optimizing Sprites
Uber-Sprite Versus Modular Sprite
Highly Optimized CSS Sprites
Other Image Optimizations
Avoid Scaling Images
Crush Generated Images
Favicons
Apple Touch Icon
Summary

11. Sharding Dominant Domains verees
Critical Path
Who’s Sharding?
Downgrading to HTTP/1.0
Rolling Out Sharding
IP Address or Hostname
How Many Domains
How to Split Resources
Newer Browsers

12. Flushingthe DocumentEarlycooiiiiiiiiiiiiiiii i
Flush the Head

Output Buffering

130

133
134
135
135
137
139
141
142
143
144
144
145
145
146
147
149
150
151
153
154
155
155
155
156
157
158
159

161
161
163
165
168
168
168
168
169

171
171
173

viii | Table of Contents

