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Preface

This work was first published in 1947 in German under the title “Re-
chenmethoden der Quantentheorie”. It was meant to serve a double
purpose: to help both, the student when first confronted with quantum
mechanics and the experimental scientist, who has never before used it
as a tool, to learn how to apply the general theory to practical problems
of atomic physics. Since that early date, many excellent books have been
written introducing into the general framework of the theory and thus
indispensable to a deeper understanding. It seems, however, that
the more practical side has been somewhat neglected, except, of course,
for the flood of special monographs going into broad detail on rather
restricted topics. In other words, an all-round introduction to the
practical use of quantum mechanics seems, so far, not to exist and may
still be helpful.

It was in the hope of filling this gap that the author has fallen in
with the publishers’ wish to bring the earlier German editions up to
date and to make the work more useful to the worldwide community
of science students and scientists by writing the new edition in English.

From the beginning there could be no doubt that the work had to be
much enlarged. New approximation methods and other developments,
especially in the field of scattering, had to be added. It seemed necessary
to include relativistic quantum mechanics and to offer, at least, a glimpse
of radiation theory as an example of wave field quantization. The
choice of the problems, included in the old days in a somewhat happy-
go-lucky way, had now to be carefully reconsidered.

Thus a total of about twice as many problems as in the last German
edition has resulted. Not one of the original problems has been simply
translated; not more than about fifty have only undergone reshaping
from the earlier text; the bulk, however, is going to be presented here
for the first time. Nevertheless, the general character has remained the
same, with perhaps a slight tendency to arrive at even more applicable
results and numerical values at the end of each problem.

The more elementary problems, such as square-well potentials, have
not been omitted but somewhat abridged. The general introduction to
the German edition, some twenty odd pages surveying the basic equa-



iv Preface

tions and their meaning, has been discarded. Any student using the
problems will be sufficiently well acquainted with the general framework
to justify that omission. On the other hand, the extensive use of special
functions made throughout the work seemed to make a mathematical
appendix useful in which such formulae as occur in the problems have
been collected and, in part, derived.

With considerable hesitation but giving way to the publishers’
practical arguments the author has consented to having this edition
divided into two separate volumes, hoping that no serious damage has
thus been done to the intrinsic structure and continuity of the work.
To facilitate its use, the complete index for both parts has been printed
twice and will appear at the end of each volume. The numbers, there-
fore, refer to the problems in question, not to pages.

Hinterzarten, March 1971
The Author



Preface to the Paperback Edition

More than three years have elapsed, since this work appeared as a
two-volume cloth edition. Author and publisher have been much
gratified to learn how well it was received by scientists in many coun-
tries and how useful it proved to students of physics. To serve as a
regular supplement to text books, however, it was hampered by its
necessarily high price. Hence, the author has gratefully accepted the
publisher’s suggestion of a much less expensive one-volume Springer
Study Edition; the more so, since it has always been-his wish, as al-
ready expressed in the former edition’s preface, to see the total work
re-united in one volume. To save every conceivable additional cost, no
corrections or alterations have been made; an errata sheet listing
trivial errors, however, has been prepared, see p. XVI. Furthermore,
the original pagination has been kept unchanged which, we trust,
should cause very little inconvenience.

Author and publisher very much hope that a more widespread
distribution of the book will thereby result and that it will meet espe-
cially the needs of the student.

Hinterzarten, September 1974
The Author
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I. General Concepts

Problem 1. Law of probability conservation

If the normalization relation
[dxy*y =1 (1.n

is interpreted in the sense of probability theory, so that d3xy*y is the
probability of finding the particle under consideration in the volume
element d>x, then there must be a conservation law. This is to be derived.
How may it be interpreted classically?

Solution. The conservation law sought must have the form of an
equation of continuity,

. op
divs + ESO (1.2)
with
p=y*y (1.3)

the probability density, and s the probability current density. As p is a
bilinear form of  and its complex conjugate, Eq. (1.2) can be constructed
only by a combination of the two Schrodinger equations

oy e B

Hy=—— — — 4
v i ot i ot (14

with the hamiltonian
2

h
H=———-V*+ V() (1.5)
2m
the same for both equations. Thus we find
h
WHY -y HY* = - =

According to (1.2) it ought to be possible to write the left-hand side in the
form of a divergence. Indeed we have



2 General Concepts
h? h?
Yy*Hy—yHy* = — 2—(¢*V2W—¢V2¢*)= — 5 div(y* Vy -y Vy¥)
m 2m

so that we may identify

h
s = — *Vy —y Vy*). (1.6)
2mi

Classical interpretations may be arrived at as follows. If the quantities
p and s are both multiplied by m, the mass of the particle, we obtain mass
density p,, and momentum density g :

Pm=mp; g=ms, (1.7

and the equation of continuity may be interpreted as the law of mass
conservation. In the same way, multiplication by the particle charge, e,
yields charge density p, and electric current density j:

p.=e€p; Jj=es, (1.8)

and (1.2) becomes the law of charge conservation.

It is remarkable that the conservation laws of both mass and charge
are essentially identical. This derives from the fact that one particle by its
convection current causes both.

The expression for the total momentum of the Schrédinger field,
derived from (1.6) and (1.7),

h
p= j d’xg= Tjd%(l//*Vlﬁ—i//Vlﬁ*),
i
may by partial integration in the second term be reduced to

p=fd3xl//* GV)tﬂ (1.9)

corresponding to its explanation as the expectation value of the momen-
tum operator (#/i) V in the quantum state i (cf. Problem 3).

Problem 2. Variational principle of Schrodinger

To replace the Schrddinger equation

2
R ey vy =Ey @.1)
2m

by a variational principle for the energy.



Problem 2. Variational principle of Schrédinger 3

Solution. Since the constraint
jd"’x:ﬁ*n// =1 (2.2)

holds for any solution y of the differential equation (2.1), the energy
will be found by multiplying (2.1) with y* and integrating over the whole
space:

hz
E=jd3x|//*{——V2w+V(r)(//}. (2.3)
2m
A partial integration in the first term yields, according to Green’s law,

fd3xy*V2y = §df - y* Vi — [PxVy*-Vy . (2.4)

Now, the normalization integral (2.2) exists only if, at large distances r,
the solution y vanishes at least as

—3_
YocrT27% 0.

Under this condition, however, the surface integral in (2.4) vanishes
when taken over an infinitely remote sphere so that (2.3) may be written

E=Jd3x {LZVW*'VIII-F!//* V(r)w}. 2.5)
2m

This equation is completely symmetrical in the functions ¥ and y*, as
is the normalization (2.2), so that it might equally well have been derived
from the complex conjugate of Eq. (2.1),

2
—h—sz//*+ V(ryy* = Eg*. (2.1%)
2m

It would not be difficult to show that (2.1) and (2.1*) are the Euler
equations of the variational problem to extremize the integral (2.5) with
the constraint (2.2). We shall, however, make no use of the apparatus of
variational theory and prefer a direct proof, instead.

Let i, be a solution of (2.1) that belongs to its eigenvalue E,. It will
give the integral (2.5) the value E,. Let us then replace ¥, by a neigh-
bouring function ,+4&y with || being small but arbitrary, except
for (2.2) still to hold for ,+d¢ as well as for y;:

Jx(3+0y*) (Y, +0y) = |

and therefore

§d2x (09> + Yt oY)+ [dPx6y*oy =0. (2.6)



