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10 Centrosome control of the cell cycle
Trends in Cell Biology, Volume 15, Issue 6, June 2005 Pages 303-311
Stephen Doxsey, Wendy Zimmerman and Keith Mikule
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19 Plant signalling: the inexorable rise of

auxin
Trends in Cell Biology, Volume 16, Issue 8, August
2006 Pages 397-402

Andrew J. Fleming
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34 Tuming cells red: signal transduction mediated by erythropoietin
Trends in Cell Biology, Volume 15, Issue 3, March 2005, Pages 146-155
Terri D. Richmond, Manprit Chohan and Dwayne L. Barber
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44 More than just proliferation: Myc function in stem cells
Trends in Cell Biology, Volume 15, Issue 3, March 2005, Pages 128-137
Mark J. Murphy, Anne Wilson and Andreas Trumpp
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54 COP1-from plant photomorphogenesis to mammalian
tumorigenesis

Trends in Cell Biology, Volume 15, Issue 11, November 2005 Pages 618-625
Chunling Yi and Xing Wang Deng
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62 The interaction between FOXO and SIRT1: tipping the

balance towards survival
Trends in Cell Biology, Volume 14, Issue 8, August 2004, Pages 408-412
Maria E. Giannakou and Linda Partridge
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67 Protein phosphorylation in signaling - 50 years and counting
Trends in Biochemical Sciences, Volume 30, Issue 6, June 2005, Pages 286-290
Tony Pawson, and John D. Scott
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72 Nitric oxide signaling: no longer simply on or off
Trends in Biochemical Sciences, Volume 31, Issue 4, April 2006, Pages 231-239
Stephen P. L. Cary, Jonathan A. Winger, Emily R. Derbyshire and Michael A. Marletta
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81 Bridging the GAP between insulin signaling and GLUT4

translocation
Trends in Biochemical Sciences, Volume 31, Issue 4, April 2006, Pages 215-222
Robert T. Watson and Jeffrey E. Pessin
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102 Interference with HH-GLI signalling inhibits prostate
cancer

Trends in Molecular Medicine, Volume 11, Issue 5, May 2005, Pages 199-203
Barbara Stecca, Christophe Mas and Ariel Ruiz i Altaba
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89 Getting to know your neighbours; a new mechanism for
cell intercalation

Trends in Genetics, 2004, Volume 21, Issue 2, Pages 70-73

Kelly K. Nikolaidou and Kathy Barrett
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93 MAP kinase kinase kinases and innate immunity
Trends in Immunology, Volume 27, Issue 1, January 2006, Pages 40-48
Antony Symons, Soren Beinke and Steven C. Ley
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107 Helicobacter pylori-induced epithelial cell signalling in
gastric carcinogenesis

Trends in Microbiology, Volume 12, Issue 1, January 2004, Pages 29-36
Michael Naumann and Jean E. Crabtree
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115 Intraneuronal trafficking of G-protein-coupled receptors
in vivo
Trends in Neurosciences, Volume 29, Issue 3, March 2006, Pages 140-147

Véronique Bernard, Marion Décossas, Isabel Liste and Bertrand Bloch
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123 Free radicals and aging
Trends in Neurosciences, Volume 27, Issue 10, October 2004, Pages 595-600

Gustavo Barja
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Chromosome Segregation and Aneuploidy series
Centrosome control of the cell cycle

Stephen Doxsey', Wendy Zimmerman? and Keith Mikule’
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Early observations of centrosomes, made a century ago,
revealed a tiny dark structure surrounded by a radial
array of cytoplasmic fibers. We now know that the fibers
are microtubules and that the dark organelles are
centrosomes that mediate functions far beyond the
more conventional role of microtubule organization.
More recent evidence demonstrates that the centro-
some serves as a scaffold for anchoring an extensive
number of regulatory proteins. Among these are cell-
cycle regulators whose association with the centrosome
is an essential step in cell-cycle control. Such studies
show that the centrosome is required for several cell-
cycle transitions, including G, to S-phase, G, to mitosis
and metaphase to anaphase. In this review (which is part
of the Chromosome Segregation and Aneuploidy
series), we discuss recent data that provide the most
direct links between centrosomes and cell-cycle
progression.

Introduction

Chemical reactions in solution can be inefficient. In a
multi-component biochemical reaction, the first com-
ponent must locate, contact and modify its target before
other steps can proceed. However, if all components of the
reaction are physically linked together at a common site,
the efficiency of the process can be enhanced. Perhaps the
best example of such ‘solid-state biochemistry’ is the
formation of signaling ‘modules’ in which multiple kinases
are physically integrated in a way that facilitates a series
of sequential binary interactions, thus creating a protein
kinase cascade [1]. Mathematical modeling indicates that
protein scaffolding can significantly increase the efficiency
of kinase signaling pathways [2]. Physical linkage of
molecules in a common pathway could increase the
local concentration of components, limit nonspecific
interactions and provide spatial control for regulatory
pathways by positioning them at specific sites in
proximity to cellular targets (e.g. other pathways,
organelles, etc.) or to incoming signals from within or
outside the cell. Scaffolding mechanisms could also
provide temporal control of signaling events such as
activation of cell-cycle transitions. In the process, the
scaffold network could itself be monitored by its ability
to ensure anchoring and functional outputs of regulat-
ory pathways.

Corresponding author: Doxsey. S. (stephen.doxsey@umassmed.edu).
Available online 12 May 2005

A growing body of evidence indicates that centrosomes
serve as multiplatform scaffolds for a multitude of
signaling networks. The centrosome in animal cells is
usually located at the cell center, where it serves to
nucleate polarized microtubule arrays for organizing
cytoplasmic organelles and primary cilia in interphase
cells, and for mitotic spindle organization and cytokinesis
during mitosis. The centrosome is ~1-2 um in diameter
and consists of two barrel-shaped centrioles arranged
perpendicular to one another, surrounded by the pericen-
triolar material (PCM). Estimates suggest that the
centrosome comprises hundreds of proteins, including
many large (200-450 kDa) coiled-coil scaffold proteins
that serve as docking sites for a growing number of
regulatory and other activities (Table 1; see also Sup-
plementary Table S1 online) [3]. The PCM is in part
organized by centrioles [4] and contains y-tubulin ring
complexes (yTuRCs), which nucleate microtubules,
although other proteins also appear to be involved in this
process [5]. Microtubule anchoring (distinct from nuclea-
tion) can occur at the distal appendages of the older or
‘mother’ centriole at least during some cell-cycle stages [6].

Table 1. Proteins reported to localize to the centrosome?

Category Number of proteins
per category

Ubiquitination and protein degradation 23
Nuclear transport/spindle assembly 4
Cytoskeletal regulators 22
CDKs and cyclins 5
Mitotic regulators 8
Chaperonins 3
Apoptosis related 8
DNA damage checkpoint 4
MAPK pathway 8
Spindle checkpoint 6
Mitotic exitYMEN 9
Cytokinesis/SIN 11
Transcription regulators 4
mRNA/MRNA processing 6
G+/S regulation 2
Wnt signaling 3
Membrane receptor signaling 13
Other kinases/phosphatases 7
Golgi regulation 2
Other enzymes 10
Structural/scaffold proteins 60
Microtubule associated proteins (MAPS) 31
Motor proteins 15
Calcium binding 5
Other proteins 30
Viral proteins and infectious agents 13

“For a complete, extensively referenced, tabulation of the individual proteins, see
Supplementary Table S1 online.

¢ 2005 Elsevier Ltd. All rights reserved



As many regulatory molecules are found at centro-
somes, it 1s tempting to speculate that centrosomes
serve as solid-state signaling machines capable of
regulating many cellular functions, although, in most
cases, the function of the centrosome-anchored fraction
of these molecules has not been determined.

The substantial number of regulatory molecules that
localize to the mammalian centrosome suggests the
presence of complex regulatory networks at this site.
For example, scaffold proteins such as the budding/
fission yeast Nudlp/Cdcllp anchor multiple signaling
molecules at the spindle pole body (the yeast centro-
some equivalent) to control mitotic exit and cytokinesis
[7]. In addition, many coiled-coil centrosomal proteins
that act as scaffolds for anchoring protein kinases have
been identified (e.g. protein kinases A, B and C) [8].
More recent results demonstrate a requirement for
centrosomal anchoring of regulatory pathways in the
control of cell-cycle progression (see below and Box 1).
These observations provide some of the first functional
links between centrosomes and regulatory networks
and are the focus of this review. We discuss recent
studies, primarily in mammalian cells, that provide
the most direct evidence for a link between centro-
somes and cell-cycle progression from G; to S-phase
(G;-S), G2 to M-phase (Go—M) and metaphase to
anaphase (M-A); centrosomal regulation of cytokinesis
has been reviewed recently [9].

Box 1. Coordinating cycles: cell, centrosome and DNA cycles
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The centrosome in the G;-S transition

Removal of core centrosome components

Studies designed to remove centrioles and associated PCM
from cells by microsurgical cutting [10] or laser ablation
[11] have provided direct evidence for centrosomes in cell-
cycle progression (Figure la,b). Removal of core centro-
some components resulted in the formation of acentriolar
microtubule organizing centers (MTOCSs) containing sev-
eral PCM proteins [11,12], similar to those of higher plants
and some meiotic systems [13,14]. The animal cells
containing acentriolar MTOCs formed functional mitotic
spindles, but about half failed to cleave into two daughter
cells during cytokinesis. All cells with acentriolar MTOCs,
whether they completed cytokinesis or failed (forming
tetraploid cells), did not initiate DNA replication (BrdU-
negative, Figure la). Moreover, ablation of one of two
centrosomes in prometaphase cells produced a centro-
some-containing daughter that continued to cycle (BrdU-
positive) and a daughter cell with an acentriolar MTOC
that did not enter S-phase (BrdU-negative, Figure 1b). By
contrast, extra centrosomes (or nuclei) created by cell-
fusions or by inhibition of cytokinesis using actin-
perturbing drugs, did not inhibit cell-cycle progression
[15,16]. In addition, cell-cycle progression did not appear
to require centrosome-associated microtubules. Normal
cycling diploid cells progressed through G; without
microtubules (after nocodazole treatment), suggesting
that they were not required for this cell-cycle transition.

Accurate cell division requires the coordinated completion of three
separate but interdependent cycles namely, the cell, centrosome and
nuclear cycles [42-44] (Figure ). However, recent reports [24,29] have
suggested that both the nuclear and cell cycles depend upon the
centrosome or centrosome cycle for advancement.

The cell cycle

The cell, or cytoplasmic, cycle consists of the sequential activation and
deactivation of cyclin-dependent kinases (CDKs). Control is provided
through the availability of partner cyclins (cyc) and by phosphoryla-
tion/dephosphorylation events. CDK inhibitors (CKls) provide a third
level of CDK regulation by binding to and inactivating CDK-cyc
complexes. p53 family members and other proteins transcriptionally
regulate CKI levels. CKls are upregulated in response to signaling
pathways that monitor nutrient availability (i.e. serum), osmolarity/-
salinity, temperature, DNA damage and other parameters and serve to
arrest the cell cycle [45].

The centrosome cycle

Following cytokinesis, a normal diploid cell inherits one centrosome
with two centrioles that replicates during S-phase, separates around
G,-M, and becomes part of the spindle poles during M phase. The
molecular details of centrosome duplication are unclear. However,
most researchers would agree that duplication is initiated at the G1-S
transition and is coincident with Cdk2-dependent phosphorylation of
centrosome substrates and the subsequent moving apart or ‘splitting’
of the centriole pair (blue/red cylinder) [23,46]. Daughter centrioles
then arise from the side of each centriole on or near the pericentriolar
material (PCM) and become mature full-length structures by the end of
G,. By M-phase both centrosomes have acquired the maximal amount
of PCM.

The nuclear cycle

During each cell-division cycle, the genome must be duplicated,
condensed and precisely divided among daughter cells. Approxi-
mately at G;-S, Cdk2 phosphorylation of the origin of replication
(ORC)-bound pre-replication complex initiates DNA polymerase
recruitment and firing of the origins [44], followed by complete
genome replication in S-phase. In G,, the nucleotide excision repair
complex detects DNA mismatches or strand breaks and halts the cell
cycle through checkpoint kinase activation, so that repairs can be
completed before entry into mitosis. At the end of G,, Cdk1 activation
initiates nuclear envelope breakdown and chromosome conden-
sation, two hallmarks of mitotic entry. Nuclear lamin phosphorylation,
along with microtubule ingression are responsible for nuclear
envelope breakdown [43], whereas chromosome condensation
requires histone H3 phosphorylation [47]. Mitosis proceeds with
chromosome alignment on the metaphase plate, separation of sister
chromatids at anaphase and cytokinesis.

Linking cycles

The use of common regulatory complexes, such as CDKs, to
coordinate the cell, centrosome and nuclear cycles is one way of
coupling them. Another method of coordination is accomplished by
localizing complexes to a given site. This occurs at the centrosome at
both the G;-S and G,-M transitions (large red arrows; see also
Table 1). At G,-S, cycE recruitment to the centrosome is needed for
DNA replication [24], whereas Cdk2 activity is required at the
centrosome to start its cycle [23]. At G,—-M, centrosome-bound Cdk1
is activated first and initiates mitosis [29]. These strategies not only
provide a template for cell-cycle activation at certain key stages but, in
the process, could serve to monitor the integrity of the centrosome (at
least the binding sites for cell-cycle regulatory molecules).
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Figure I. Centrosome-associated steps during the cell cycle. Only the cell-cycle transitions that appear to require centrosomes are shown (red arrows).

By contrast, cells arrested within G, in the presence of
taxol or in nocodazole after failed cytokinesis [17,18].
However, results from these experiments are difficult to
interpret as stabilized microtubules in taxol-treated cells
and the consequences of failed cytokinesis might influence
cell-cycle progression.

Changes in centrosome protein expression levels or
localization induce G; arrest

Molecular studies have also uncovered a role for individ-
ual centrosome components in cytokinesis and cell-cycle
progression (Figure 1c,d). Centriolin is a component of the
mother centriole that shares homology with Nudlp and
Cdcllp [19], budding and fission yeast proteins involved
in cytokinesis/mitotic exit, respectively [9]. Centriolin
depletion or overexpression of the Nudlp/Cdcllp hom-
ology domain delayed cytokinesis for extended periods of
time. Following the cytokinesis delay, cells did not
progress into S-phase but remained in the G; peak when
examined by flow cytometry (2N DNA content). AKAP450

12

is a protein of the PCM with a C-terminal domain that
serves a centrosome targeting function [20,21]. Ectopic
expression of the AKAP450 C-terminus mislocalized
endogenous AKAP450 and protein kinase A (PKA) from
centrosomes and induced cytokinesis defects and G,
arrest. Thus, the results from both centrosome protein
perturbation and centrosome/centriole removal studies
suggest that G; arrest could be a consequence of prior
cytokinesis defects.

Does mitotic dysfunction cause G, arrest?

The central role of centrosomes in mitotic spindle
organization and cytokinesis suggests that mitotic dys-
function leads to G; arrest. However, recent studies
indicate this might not be the case. Microinjection of
antibodies against PCM-1 into early interphase mouse
zygotes prevented cell-cycle progression into S-phase [22].
In another study, over 20 proteins found at five distinct
regions of the centrosome (Figure 1c,d) were individually
targeted for depletion by siRNAs. Many showed no



