E z) B MR % S

St T 32

(ZR3hR - SE8hR)

SOMMERVILLE

~ Software
Engineering

A AP

-

-

lan Sommerville
EZREEHKF

() &

LA T Wb AR 3

China Machine Press

(Z23ZhR - SH8hR)

—
B
8

k3

ERERTAY

Ian Sommerville: Software Engineering, Eighth Edition (ISBN 13: 978-0-321-31379-9,
ISBN 10: 0-321-31379-8).

Copyright © Addison-Wesley Publishers Limited 1982, 1984, © Pearson Education
Limited 1989, 2001, 2004, 2007.

This edition of Software Engineering, Eighth Edition is published by arrangement
with Pearson Education Limited. Licensed for sale in the mainland territory of the People’s

Republic of China only, excluding Hong Kong, Macau, and Taiwan.

A HHECRLEN AR i #E [H Pearson Education 4 S AR AU . KRB HIRE
BEEFR, AREUEASRERRSEELHNE.
RENR AR BRI HE (REESE. BT, G8HKX),

WBIURR, BRLR.
FHEEME e REHRIARIMESEAT

EHRRIEIZS: BF: 01-2006-2848
BEHERSKE (CIP) ¥iE

B TR (SE3C - 58R) / (35) FEBRAE/R (Sommerville, 1) #. —t3. HURT
v ARHE, 2006.9

(2 W5 AR5)

F 4B X Software Engineering, Eighth Edition

ISBN 7-111-19770-4

I.%3k-- T. B%- M. HKETER-EHH-—FHx V. TP311.5
P ERARFBECIPEIEZE (2006) $0965742

LB Tl AR A (b sost sk X 17 05 A #1225 WRE43ED 100037)
TEmE: RiRE

AL FACHIAREN R ENRI - FEBEILH R ITHR AT
200659 A% | B2 1 RENR

170mm x 242mm + 54F[I5k

Efr: 79.005T

JLaASS, BRI, BRI, 65, BArRITEIAN
A, (010) 68326294

BIRE BIIE

XEEMLUME, FREEOREREMINES T RNEREE, ERFERERSRR
RIS T2EEARYE, hERXENES, FEEEGERRRRIIN
+REFMAREN., MR, ERLAERS, RN LF5HT RFERBE
WHEE A, HENER P IF LRI R & OB RATL, dkm™E
M2 REEERE, FNERTHRAWEE, SHETEROFEE, REFEEARE,
X HAEEENE, KO EHFASEE AR TRE.

VAR, ELRERLKINEZD T, RENTELSLRRRE, L LALIE
RHZEY, XM HENHEEFMHRAEELIE, Ak, mEeLBEMIRIX
EHRERB LEEERRE. AREERERREHBERE. MEARKVHIRT,
(EZRBERAELXTENRELROLTERARENZAEHNAETFZ2ERGEEZ
. Eik, Bl#t—#tESMEE T EHLEA R R E T REILE T LR REFRAH#
HEA, hREHAEN. BREEMHR —RKRENLHZE,

PR TR EERXE BAERAFREEIRE “HREABFERS. H1998
EFEh, EBEATME TEEARE T #E., BIFEIMEFEM L. 22 LERTH
4, $fi15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZgith 5}
EAHBRATESLTRFMAERXR, NENMBUAE S E MEH 8% H Tanenbaum,
Stroustrup, Kernighan, Jim Gray% Kfi &K —#LBHIES, LI “HEILBZEAE”
AR, fiEeEs], HRAER. REAQENHE, BEAILTIENER
sa L FNHEIA

“HEHILBFAE WHRIESE TENMEEHROIER, BENNERXDINE
HTHENEERS, EAFFEHBETHFNERHIE, mEBAEEdHEY
FRERESEFENEE, AROCERARBHHESRERF. &4, “UHEIREAS
ELHRTEEA&, XLEPHELEREPH LT RIFOAM, HFEFZERRAA
ERBMSERBE, AP 5RRITT T RBSRERM,

B & 2 E R IO P EEMBA AR, B 5 E S BB HIF R
R RS A—TFORE., Ak, EEATEIMASHEBEMMOE, £ “FEHT’
FBHLRIZ TR =EA RSB REILBH . B “HHREIBHEANST 250, R ENRE
Fobt, WIBShFFREY “LBFRRAE" o [, SIHELFBITHEFRHFT “Schaum’s
Outlines” RFNAR “2FXLMEZIRIRIN . ATRIEX=ZENBHREE, R
AT EAF A FERFEIMTIRS , RELAFEIET PERERE. L kE. BEKX

iv

#., BEPREARE, EHA%, EEREBRE, BERAE, WHILKE. FEREKE.
MRELLKRE, AXTEAY, FEARKE, EEMEMEXKE, LREBEKE,
k%, BBEET A%, MK, M T2k. FEEREERSMIEAEH
DEENEARFMETYAET BN &N SBNELEEAR “ERIERERE”,
AR AL LA AR B,

=N R T MR HAEHIMNREMNSE, AERNESEAHTEIL X
FIVHIHKFESITER, XPhiFELBHH2AHM. L T., Stanford, U.C. Berkeley, C. M.
U FHFR2RRKEREA, AOUEETEFIR. BEEH. BIERL. HELGER
gy, BEE. RIFRE. RETLRER. BR%. BES5WE. BHEE¥ZERAKRET
BT ERFIEMZLRE, MASABE—ANBAIBESRTEZFE. F0F
B=+EMAE. ARCHESERANLEMERRA. X ERBGEENAL T AEN
W ZT, BRESHEHENRENERTERETAZE.

RBHIEE . 2BEM . —HIFE. FPROEK. BaAVEE, XBEEFER
MNMWBHEAETHREMRIE, ERIMHBEBRERERE, MRBOUELERZIMEDX
—% R ARV EERE . EHAPHRRRBNNVEERSHOEA, £EA VL ENM
FoikE xR TER M EIGERA TIRIE, BINMWBERSENT:

B, FHR 4 : hzjsj@hzbook.com
BEZAIE. (010) 68995264

BRAMM: TR REE RS
HREX 4ab5: 100037

R4

SR

EXESEE
(et 225 I
E W BEX
S B2 EF
FhE FRHR
R &R
Bk 2o
718 R TR
I S S)
® R

l_l

J
¥

\

)

LA
E SR
FET
% &) 2%
X% m %
JE
A% B 3%

X £ A
x B &
wAF
BAia %t
w9
EEXL

WA 4=

The first edition of this textbook on software engineering was published more than
twenty years ago. That edition was written using a dumb terminal attached to an early
minicomputer (a PDP-11) that probably cost about $50,000. I wrote this edition on
a wireless laptop that cost less than $2,000 and is many times more powerful than
that PDP-11. Software then was mostly mainframe software, but personal computers
were just becoming available. None of us then realised how pervasive these would
become and how much they would change the world.

Changes in hardware over the past twenty or so years have been absolutely remark-
able, and it may appear that changes in software have been equally significant.
Certainly, our ability to build large and complex systems has improved dramatically.
Our national utilities and infrastructure—energy, communications and transport—
rely on very complex and, largely, very reliable computer systems. For building
business systems, there is an alphabet soup of technologies—J2EE, .NET, EJB, SAP,
BPELAWS, SOAP, CBSE—that allow large web-based applications to be deployed
much more quickly than was possible in the past.

However, although much appears to have changed in the last two decades, when
we look beyond the specific technologies to the fundamental processes of soft-
ware engineering, much has stayed the same. We recognised twenty years ago that
the waterfall model of the software process had serious problems, yet a survey
published in December 2003 in /EEE Software showed that more than 40% of
companies are still using this approach. Testing is still the dominant program
validation technique, although other techniques such as inspections have been used
more effectively since the mid-1970s. CASE tools, although now based around the
UML, are still essentially diagram editors with some checking and code-generation
functionality.

viii Preface

Our current software engineering methods and techniques have made us much
better at building large and complex systems than we were. However, there are still
too many projects that are late, are over budget and do not deliver the software
that meets the customer’s needs. While I was writing the 7th edition, a government
enquiry in the UK reported on the project to provide a national system to be used
in courts that try relatively minor offenders. The cost of this system was estimated
at £156 million and it was scheduled for delivery in 2001. In 2004, costs had
escalated to £390 million and it was still not fully operational. There is, therefore,
still a pressing need for software engineering education.

Over the past few years, the most significant developments in software engineer-
ing have been the emergence of the UML as a standard for object-oriented system
description and the development of agile methods such as extreme programming.
Agile methods are geared to rapid system development, explicitly involve the user
in the development team, and reduce paperwork and bureaucracy in the software
process. In spite of what some critics claim, I think these approaches embody good
software engineering practice. They have a well-defined process, pay attention to
system specification and user requirements, and have high quality standards.

However, this revision has not become a text on agile methods. Rather, I focus
on the basic software engineering processes—specification, design, development,
verification, and validation and management. You need to understand these processes
and associated techniques to decide whether agile methods are the most appropriate
development strategy for you and how to adapt and change methods to suit your
particular situation. A pervasive theme of the book is critical systems—systems whose
failure has severe consequences and where system dependability is critical. In
each part of the book, I discuss specific software engineering techniques that are
relevant to critical systems engineering.

Books inevitably reflect the opinions and prejudices of their authors. Some
readers will disagree with my opinions and with my choice of material. Such dis-
agreement is a healthy reflection of the diversity of the discipline and is essential
for its evolution. Nevertheless, I hope that all software engineers and software
engineering students can find something of interest here.

The structure of the book

The structure of the book is based around the fundamental software engineering
processes. It is organised into seven parts. The first six focus on software processes
and the final part discusses some important new software engineering technologies.

Part 1: Introduces software engineering, places it in a broader systems context
and presents the notions of software engineering processes and management.

Preface ix

Part 2: Covers the processes, techniques and deliverables that are associated with
requirements engineering. It includes a discussion of software requirements,
system modelling, formal specification and techniques for specifying dependability.
Part 3: This part is devoted to software design and design processes. Three out of
the six chapters focus on the important topic of software architectures. Other topics
include object-oriented design, real-time systems design and user interface design.
Part 4: Describes a number of approaches to development, including agile methods,
software reuse, CBSE and critical systems development. Because change is now
such a large part of development, I have integrated material on software evolution
and maintenance into this part.

Part 5: Focuses on techniques for software verification and validation. It includes
chapters on static V & V, testing and critical systems validation.

Part 6: This part covers a range of management topics: managing people,
cost estimation, quality management, process improvement and configuration
management.

Part 7: The final part includes three chapters that are devoted to important
new technologies that are already starting to be used. The chapters cover security
engineering, service-oriented software engineering and aspect-oriented software
development.

In the introduction to each part, I discuss the structure and organisation in more
detail.

Changes from the 7th edition

This new edition of my textbook can be thought of as a mid-life upgrade than a
radical new revision of the book. I have designed it to be completely compatible
with the 7th edition but have included a new section on Emerging Technologies.
This discusses recent developments which I believe are significant for the future of
software engineering. This section includes three additional chapters:

30. Security engineering where I discuss issues of how to ensure that your soft-
ware is secure and can resist external attacks.

31. Service-oriented software engineering where 1 describe new approaches to
application development using reusable web services.

32. Aspect-oriented software development where | introduce a new technique of
software development based around the separation of concerns.

As the other chapters in the book are still current and relevant, I have not mod-
ified these, apart from very small changes to link to the new material in Chapters
30-32. More information on changes and the differences between the 6th and 7th
editions is available from the book website.

X Preface

Readership

The book is aimed at students taking undergraduate and graduate courses and at
software engineers in commerce and industry. It may be used in general software
engineering courses or in courses such as advanced programming, software specifica-
tion, and software design or management. Software engineers in industry may find
the book useful as general reading and as a means of updating their knowledge on
particular topics such as requirements engineering, architectural design, dependable
systems development and process improvement. Wherever practicable, the examples
in the text have been given a practical bias to reflect the type of applications that
software engineers must develop.

Using the book for teaching

The book is widely used in a range of software engineering courses and, if you already
use the 7th edition, then you will find this edition to be completely compatible with
it. 1 have deliberately left Chapters 1 to 29 of the 7th edition unchanged. If you
use these in your teaching, there is no need to change any of your supplementary
material or associated coursework. The new chapters are stand-alone chapters and
you may wish to introduce one or more of them to give students an understanding
of new developments in the subject.

I have designed the book so that it can be used in three types of software
engineering course:

1. General introductory courses in software engineering For students who have
no previous software engineering experience, you can start with the introductory
section, then pick and choose chapters from the other sections of the book.
This will give students a general overview of the subject with the opportunity
of more detailed study for those students who are interested. If the course’s
approach is project-based, the early chapters provide enough material to allow
students to get started on projects, consulting later chapters for reference and
further information as their work progresses.

2. Introductory or intermediate courses on specific software engineering topics
The book supports courses in software requirements specification, software design,
software engineering management, dependable systems development and soft-
ware evolution. Each part can serve as a text in its own right for an introductory
or intermediate course on that topic. As well as further reading associated with
each chapter, I have also included information on other relevant papers and books
on the web site.

Preface Xi

Web pages

3. More advanced courses in specific software engineering topics The chapters
can form a foundation for a specific software course, but they must be sup-
plemented with further reading that explores the topic in greater detail. For
example, I teach an MSc module in systems engineering that relies on material
here. I have included details of this course and a course on critical systems
engineering on the web site.

The benefit of a general text like this is that it can be used in several related
courses. The text can be used in an introductory software engineering course and
in courses on specification, design and critical systems. Courses on component-based
software engineering and systems engineering use the book along with additional
papers that are distributed to students. Having a single text presents students with
a consistent view of the subject—and they don’t have to buy several books.

To reinforce the student’s learning experience, I have included a glossary of key
terms, with additional definitions on the web site. Furthermore, each chapter has:

* aclearly defined set of objectives set out on the first page;
* alist of key points covered in the chapter;

o suggested further reading—either books that are currently in print or easily
available papers (lists of other suggested readings and links can be found on
my web site);

» exercises, including design exercises.

The Software Engineering Body of Knowledge project (http://www.swebok.org)
was established to define the key technical knowledge areas that are relevant to pro-
fessional software engineers. These are organised under 10 headings: requirements,
design, construction, testing, maintenance, configuration management, management,
process, tools and methods, and quality. While it would be impossible to cover all
of the knowledge areas proposed by the SWEBOK project in a single textbook, all
of the top-level areas are discussed in this book.

The publishers web site that is associated with the book is:
http:/fwww.pearsoned.co.uk/sommerville
To support the use of this book in software engineering courses, I have included

a wide range of supplementary material on the web site. If you follow the Material
for Instructors links, you can find:

xii Preface

» lecture presentations (PowerPoint and PDF) for all chapters in the book;

* class quiz questions for each chapter;

» case studies;

* project suggestions;

* course structure descriptions;

+ suggestions for further reading and links to web resources for each chapter;

s solutions for a selection of the exercises associated with each chapter and for
the quiz questions (available to instructor’s only).

My own web site, includes all of the material on the publishers web site plus
extensive supplementary material on software engineering such as links to other sites,
invited lectures that I have presented, teaching material that I have developed for
related courses such as Systems Engineering and the web sites of previous editions
of Software Engineering. The URL of this site is:

http:/fwww.software-engin.com

It has been my policy, both in the previous edition and in this edition, to keep
the number of web links in the book to an absolute minimum. The reason for this
is that these links are subject to change and, once printed, it is impossible to update
them. Consequently, the book’s web page includes a large number of links to resources
and related material on software engineering. If you use these and find problems,
please let me know and I will update the links.

I welcome vour constructive comments and spgeestions.about.tbe bonk.aod.tbe weh
site. You can contact me at ian @software-engin.com. I recommend that you include
{SEB] in the subject of the e-mail message to ensure that my spam filters do not
accidentally reject your mail. I regret that I do not have time to help students with their
homework, so please do not ask me how to solve any of the problems in the book.

Acknowledgements

A large number of people have contributed over the years to the evolution of this book
and I'd like to thank everyone (reviewers, students and book users who have e-mailed
me) who has commented on previous editions and made constructive suggestions
for change. The editorial and production staff at Pearson Education in England and
the US were supportive and helpful, and produced the book in record time. So thanks
to Simon Plumtree, Mary Lince, Ros Woodward, Keith Mansfield, Patty Mahtani,
Daniel Rausch, Carol Noble and Sharon Burkhardt for their help and support.

Preface xiii

As I write, I am about to leave Lancaster University for new challenges at
St Andrews University in Scotland. I'd like to thank all of my current and pre-
vious colleagues at Lancaster for their support and encouragement over the years
as software engineering has evolved.

Finally, I'd like to thank my family, who tolerated my absence when the book
was being written and my frustration when the words were not flowing. A big thank-
you to my wife Anne and daughters Ali and Jane for their help and support.

Ian Sommerville,
February 2006

Part 1

Chapter 1

Chapter 2

Preface vii
Overview 1
Introduction 3
1.1 FAQs about software engineering 5
1.2 Professional and ethical responsibility 14
Key Points 17
Further Reading 18
Exercises 18
Socio-technical systems 20
2.1 Emergent system properties 23
2.2 Systems engineering 25
2.3 Organisations, people and computer systems 34
2.4 legacy systems 38
Key Points 40
Further Reading 41
Exercises 41

Contents Xxv

Chapter 3 Critical systems

Chapter 4

Chapter 5

31
3.2
33
34
35

A simple safety-critical system
System dependability
Availability and reliability
Safety

Security

Key Points
Further Reading
Exercises

Software processes

41
4.2
43
44
4.5

Software process models
Process iteration

Process activities

The Rational Unified Process

Computer-Aided Software Engineering

Key Points
Further Reading
Exercises

Project management

5.1
52
5.3
5.4

Management activities
Project planning
Project scheduling

Risk management

Key Points
Further Reading
Exercises

43

46
47
51
55
58

60
61
61

63

65
71
74
82
85

89
90
91

92

94
96
929
104

1
112
112

xvi

Contents

Part 2

Chapter 6

Chapter 7

Chapter 8

Requirements 115
Software requirements 117
6.1 Functional and non-functional requirements 119
6.2 User requirements 127
6.3 System requirements 129
6.4 Interface specification 135
6.5 The software requirements document 136
Key Points 140
Further Reading 140
Exercises 141
Requirements engineering processes 142
7.1 Feasibility studies 144
7.2 Requirements elicitation and analysis 146
7.3 Requirements validation 158
7.4 Requirements management 161
Key Points 166
Further Reading 167
Exercises 167
System models 169
8.1 Context models 171
8.2 Behavioural models 173
8.3 Data models 177
8.4 Object models 181
8.5 Structured methods 187
Key Points 190
Further Reading 191
Exercises 191

Contents Xvii

Chapter 9 Critical systems specification 193
9.1 Risk-driven specification 195
9.2 Safety specification 202
9.3 Security specification 204
9.4 Software reliability specification 207
Key Points 213
Further Reading 214
Exercises 214

Chapter 10 Formal specification 217
10.1 Formal specification in the software process 219

10.2 Sub-system interface specification 222

10.3 Behavioural specification 229

Key Points 236

Further Reading 236

Exercises 237

Part 3 Design 239
Chapter 11 Architectural design 241
11.1 Architectural design decisions 245

11.2 System organisation 247

11.3 Modular decomposition styles 252

11.4 Control styles 256

11.5 Reference architectures 260

Key Points 263

Further Reading 264

Exercises 264

Chapter 12 Distributed systems architectures 266
12.1 Multiprocessor architectures 269

