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The first edition of this textbook on software engineering was published more than
twenty years ago. That edition was written using a dumb terminal attached to an early
minicomputer (a PDP-11) that probably cost about $50,000. I wrote this edition on
a wireless laptop that cost less than $2,000 and is many times more powerful than
that PDP-11. Software then was mostly mainframe software, but personal computers
were just becoming available. None of us then realised how pervasive these would
become and how much they would change the world.

Changes in hardware over the past twenty or so years have been absolutely remark-
able, and it may appear that changes in software have been equally significant.
Certainly, our ability to build large and complex systems has improved dramatically.
Our national utilities and infrastructure—energy, communications and transport—
rely on very complex and, largely, very reliable computer systems. For building
business systems, there is an alphabet soup of technologies—J2EE, .NET, EJB, SAP,
BPELAWS, SOAP, CBSE—that allow large web-based applications to be deployed
much more quickly than was possible in the past.

However, although much appears to have changed in the last two decades, when
we look beyond the specific technologies to the fundamental processes of soft-
ware engineering, much has stayed the same. We recognised twenty years ago that
the waterfall model of the software process had serious problems, yet a survey
published in December 2003 in /EEE Software showed that more than 40% of
companies are still using this approach. Testing is still the dominant program
validation technique, although other techniques such as inspections have been used
more effectively since the mid-1970s. CASE tools, although now based around the
UML, are still essentially diagram editors with some checking and code-generation
functionality.
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Our current software engineering methods and techniques have made us much
better at building large and complex systems than we were. However, there are still
too many projects that are late, are over budget and do not deliver the software
that meets the customer’s needs. While I was writing the 7th edition, a government
enquiry in the UK reported on the project to provide a national system to be used
in courts that try relatively minor offenders. The cost of this system was estimated
at £156 million and it was scheduled for delivery in 2001. In 2004, costs had
escalated to £390 million and it was still not fully operational. There is, therefore,
still a pressing need for software engineering education.

Over the past few years, the most significant developments in software engineer-
ing have been the emergence of the UML as a standard for object-oriented system
description and the development of agile methods such as extreme programming.
Agile methods are geared to rapid system development, explicitly involve the user
in the development team, and reduce paperwork and bureaucracy in the software
process. In spite of what some critics claim, I think these approaches embody good
software engineering practice. They have a well-defined process, pay attention to
system specification and user requirements, and have high quality standards.

However, this revision has not become a text on agile methods. Rather, I focus
on the basic software engineering processes—specification, design, development,
verification, and validation and management. You need to understand these processes
and associated techniques to decide whether agile methods are the most appropriate
development strategy for you and how to adapt and change methods to suit your
particular situation. A pervasive theme of the book is critical systems—systems whose
failure has severe consequences and where system dependability is critical. In
each part of the book, I discuss specific software engineering techniques that are
relevant to critical systems engineering.

Books inevitably reflect the opinions and prejudices of their authors. Some
readers will disagree with my opinions and with my choice of material. Such dis-
agreement is a healthy reflection of the diversity of the discipline and is essential
for its evolution. Nevertheless, I hope that all software engineers and software
engineering students can find something of interest here.

The structure of the book

The structure of the book is based around the fundamental software engineering
processes. It is organised into seven parts. The first six focus on software processes
and the final part discusses some important new software engineering technologies.

Part 1: Introduces software engineering, places it in a broader systems context
and presents the notions of software engineering processes and management.
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Part 2: Covers the processes, techniques and deliverables that are associated with
requirements engineering. It includes a discussion of software requirements,
system modelling, formal specification and techniques for specifying dependability.
Part 3: This part is devoted to software design and design processes. Three out of
the six chapters focus on the important topic of software architectures. Other topics
include object-oriented design, real-time systems design and user interface design.
Part 4: Describes a number of approaches to development, including agile methods,
software reuse, CBSE and critical systems development. Because change is now
such a large part of development, I have integrated material on software evolution
and maintenance into this part.

Part 5: Focuses on techniques for software verification and validation. It includes
chapters on static V & V, testing and critical systems validation.

Part 6: This part covers a range of management topics: managing people,
cost estimation, quality management, process improvement and configuration
management.

Part 7: The final part includes three chapters that are devoted to important
new technologies that are already starting to be used. The chapters cover security
engineering, service-oriented software engineering and aspect-oriented software
development.

In the introduction to each part, I discuss the structure and organisation in more
detail.

Changes from the 7th edition

This new edition of my textbook can be thought of as a mid-life upgrade than a
radical new revision of the book. I have designed it to be completely compatible
with the 7th edition but have included a new section on Emerging Technologies.
This discusses recent developments which I believe are significant for the future of
software engineering. This section includes three additional chapters:

30. Security engineering where I discuss issues of how to ensure that your soft-
ware is secure and can resist external attacks.

31. Service-oriented software engineering where 1 describe new approaches to
application development using reusable web services.

32. Aspect-oriented software development where | introduce a new technique of
software development based around the separation of concerns.

As the other chapters in the book are still current and relevant, I have not mod-
ified these, apart from very small changes to link to the new material in Chapters
30-32. More information on changes and the differences between the 6th and 7th
editions is available from the book website.
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Readership

The book is aimed at students taking undergraduate and graduate courses and at
software engineers in commerce and industry. It may be used in general software
engineering courses or in courses such as advanced programming, software specifica-
tion, and software design or management. Software engineers in industry may find
the book useful as general reading and as a means of updating their knowledge on
particular topics such as requirements engineering, architectural design, dependable
systems development and process improvement. Wherever practicable, the examples
in the text have been given a practical bias to reflect the type of applications that
software engineers must develop.

Using the book for teaching

The book is widely used in a range of software engineering courses and, if you already
use the 7th edition, then you will find this edition to be completely compatible with
it. 1 have deliberately left Chapters 1 to 29 of the 7th edition unchanged. If you
use these in your teaching, there is no need to change any of your supplementary
material or associated coursework. The new chapters are stand-alone chapters and
you may wish to introduce one or more of them to give students an understanding
of new developments in the subject.

I have designed the book so that it can be used in three types of software
engineering course:

1. General introductory courses in software engineering For students who have
no previous software engineering experience, you can start with the introductory
section, then pick and choose chapters from the other sections of the book.
This will give students a general overview of the subject with the opportunity
of more detailed study for those students who are interested. If the course’s
approach is project-based, the early chapters provide enough material to allow
students to get started on projects, consulting later chapters for reference and
further information as their work progresses.

2. Introductory or intermediate courses on specific software engineering topics
The book supports courses in software requirements specification, software design,
software engineering management, dependable systems development and soft-
ware evolution. Each part can serve as a text in its own right for an introductory
or intermediate course on that topic. As well as further reading associated with
each chapter, I have also included information on other relevant papers and books
on the web site.
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Web pages

3. More advanced courses in specific software engineering topics The chapters
can form a foundation for a specific software course, but they must be sup-
plemented with further reading that explores the topic in greater detail. For
example, I teach an MSc module in systems engineering that relies on material
here. I have included details of this course and a course on critical systems
engineering on the web site.

The benefit of a general text like this is that it can be used in several related
courses. The text can be used in an introductory software engineering course and
in courses on specification, design and critical systems. Courses on component-based
software engineering and systems engineering use the book along with additional
papers that are distributed to students. Having a single text presents students with
a consistent view of the subject—and they don’t have to buy several books.

To reinforce the student’s learning experience, I have included a glossary of key
terms, with additional definitions on the web site. Furthermore, each chapter has:

* aclearly defined set of objectives set out on the first page;
* alist of key points covered in the chapter;

o suggested further reading—either books that are currently in print or easily
available papers (lists of other suggested readings and links can be found on
my web site);

» exercises, including design exercises.

The Software Engineering Body of Knowledge project (http://www.swebok.org)
was established to define the key technical knowledge areas that are relevant to pro-
fessional software engineers. These are organised under 10 headings: requirements,
design, construction, testing, maintenance, configuration management, management,
process, tools and methods, and quality. While it would be impossible to cover all
of the knowledge areas proposed by the SWEBOK project in a single textbook, all
of the top-level areas are discussed in this book.

The publishers web site that is associated with the book is:
http:/fwww.pearsoned.co.uk/sommerville
To support the use of this book in software engineering courses, I have included

a wide range of supplementary material on the web site. If you follow the Material
for Instructors links, you can find:
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» lecture presentations (PowerPoint and PDF) for all chapters in the book;

* class quiz questions for each chapter;

»  case studies;

*  project suggestions;

*  course structure descriptions;

+ suggestions for further reading and links to web resources for each chapter;

s solutions for a selection of the exercises associated with each chapter and for
the quiz questions (available to instructor’s only).

My own web site, includes all of the material on the publishers web site plus
extensive supplementary material on software engineering such as links to other sites,
invited lectures that I have presented, teaching material that I have developed for
related courses such as Systems Engineering and the web sites of previous editions
of Software Engineering. The URL of this site is:

http:/fwww.software-engin.com

It has been my policy, both in the previous edition and in this edition, to keep
the number of web links in the book to an absolute minimum. The reason for this
is that these links are subject to change and, once printed, it is impossible to update
them. Consequently, the book’s web page includes a large number of links to resources
and related material on software engineering. If you use these and find problems,
please let me know and I will update the links.

I welcome vour constructive comments and spgeestions.about.tbe bonk.aod.tbe weh
site. You can contact me at ian @software-engin.com. I recommend that you include
{SEB] in the subject of the e-mail message to ensure that my spam filters do not
accidentally reject your mail. I regret that I do not have time to help students with their
homework, so please do not ask me how to solve any of the problems in the book.
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