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Preface to the Second Edition

There are too many errors in the first edition, and so a “corrected nth print-
ing” would have been appropriate. However, given the opportunity to make
changes, I felt that a second edition would give me the flexibility to change
any portion of the text that I felt I could improve. The first edition aimed
to give a geodesic path to the Fundamental Theorem of Galois Theory,
and I still think its brevity is valuable. Alas, the book is now a bit longer,
but I feel that the changes are worthwhile. I began by rewriting almost all
the text, trying to make proofs clearer, and often giving more details than
before. Since many students find the road to the Fundamental Theorem
an intricate one, the book now begins with a short section on symmetry
groups of polygons in the plane; an analogy of polygons and their symme-
try groups with polynomials and their Galois groups can serve as a guide
by helping readers organize the various definitions and constructions. The
exposition has been reorganized so that the discussion of solvability by
radicals now appears later; this makes the proof of the Abel-Ruffini theo-
rem easier to digest. I have also included several theorems not in the first
edition. For example, the Casus Irreducibilis is now proved, in keeping
with a historical interest lurking in these pages.

1 am indebted to Gareth Jones at the University of Southampton who,
after having taught a course with the first edition as text, sent me a de-
tailed list of errata along with perspicacious comments and suggestions. I
also thank Evan Houston, Adam Lewenberg, and Jack Shamash who made
valuable comments as well. This new edition owes much to the generosity
of these readers, and I am grateful to them.

Joseph Rotman
Urbana, Illinois, 1998

I thank everyone, especially Abe Seika and Bao Luong, who apprised
me of errors in the first printing. I have corrected all mistakes that have
been found.

Joseph Rotman
Urbana, Illinois, 2001
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Preface to the First Edition

This little book is designed to teach the basic results of Galois theory—
fundamental theorem; insolvability of the quintic; characterization of poly-
nomials solvable by radicals; applications; Galois groups of polynomials of
low degree—efficiently and lucidly. It is assumed that the reader has had
introductory courses in linear algebra (the idea of the dimension of a vec-
tor space over an arbitrary field of scalars should be familiar) and “abstract
algebra” (that is, a first course which mentions rings, groups, and homo-
morphisms). In spite of this, a discussion of commutative rings, starting
from the definition, begins the text. This account is written in the spirit of
a review of things past, and so, even though it is complete, it may be too
rapid for one who has not seen any of it before. The high number of exer-
cises accompanying this material permits a quicker exposition of it. When
I teach this course, I usually begin with a leisurely account of group theory,
also from the definition, which includes some theorems and examples that
are not needed for this text. Here I have decided to relegate needed results
of group theory to appendices: a glossary of terms; proofs of theorems. I
have chosen this organization of the text to emphasize the fact that poly-
nomials and fields are the natural setting, and that groups are called in to
help.

A thorough discussion of field theory would have delayed the journey
to Galois’s Great Theorem. Therefore, some important topics receive only
a passing nod (separability, cyclotomic polynomials, norms, infinite exten-
sions, symmetric functions) and some are snubbed altogether (algebraic
closure, transcendence degree, resultants, traces, normal bases, Kummer
theory). My belief is that these subjects should be pursued only after the
reader has digested the basics.

My favorite expositions of Galois theory are those of E. Artin, Kaplan-
sky, and van der Waerden, and I owe much to them. For the appendix on



X PREFACE TO THE FIRST EDITION

“old-fashioned Galois theory,” I relied on recent accounts, especially [Ed-
wards], [Gaal], [Tignol], and [van der Waerden, 1985], and older books,
especially [Dehn] (and [Burnside and Panton], [Dickson], and [Netto]). I
thank my colleagues at the University of Illinois, Urbana, who, over the
years, have clarified obscurities; I also thank Peter Braunfeld for sugges-
tions that improved Appendix C and Peter M. Neumann for his learned
comments on Appendix D.

I hope that this monograph will make both the learning and the teaching
of Galois theory enjoyable, and that others will be as taken by its beauty as
I am.

Joseph Rotman
Urbana, Illinois, 1990



To the Reader

Regard the exercises as part of the text; read their statements and do at-
tempt to solve them all. A result labeled Theorem 1 is the first theorem in
the text; Theorem Gl is the first theorem in the appendix on group theory;
Theorem R1 is the first theorem in the appendix on ruler-compass construc-
tions; Theorem H1 is the first theorem in the appendix on history.

xi



Contents

Preface to the Second Edition
Preface to the First EAItION ....ooocviiiieieeee e et ix

To the REAAET ..cvooeriiiiiii ettt xi
SYMIMETY oottt sttt etat e e n s I
RITIES .ottt et ettt bbb bbb sr e st s en e 7
Domains and Fields ... 13
Homomorphisms and Ideals ...t e 17
Quotient RINES .o 21
Polynomial Rings OVer Fields ............c.ccoveviimiiiiinin e 24
Prime Ideals and Maximal Ideals ... 31
Irreducible Polynomials ... 38
Classical FOrMUIAS ......c..cooviviiriniin s 44
SPltting Fields .oovveoevivriere i 50
The Galois GrOUP ..o e s 59
ROOIS Of URILY oo s 63
Solvability by Radicals .........ccccocvvmiiiiniiiic e 71
Independence of Characters . ... e 76
Galois EXIENSIONS ..i.ioiiiiiiiii ittt eb e 79
The Fundamental Theorem of Galois Theory ........co.cvviveciiiinieiiinciennnn. 83

xiii



Xiv CONTENTS

APPICALIONS ..ottt st e et r e ere s 85
Galois’s Great TREOTEM ..........cccooviriieinriie et 90
DiSCIIMINANLS ..ottt e 95
Galois Groups of Quadratics. Cubics, and Quartics ...........cco.occoveriininns 100
EPIOZUE oo 107
Appendix A: Group Theory DIictionary .......c.oocoverniieiieennieainennes 109
Appendix B: Group Theory Used in the Text ..., 112
Appendix C: Ruler-Compass CONSIUCHONS ....c..c.oovereviiiriin e 129
Appendix D: Old-fashioned Galois Theory ........ccovmicniiiiinnniinnnnn, 138
REFEIENCES .ot 151



Galois Theory

Galois theory is the interplay between polynomials, fields, and groups. The
quadratic formula giving the roots of a quadratic polynomial was essen-
tially known by the Babylonians. By the middle of the sixteenth century,
the cubic and quartic formulas were known. Almost three hundred years
later, Abel (1824) proved, using ideas of Lagrange and Cauchy, that there
is no analogous formula (involving only algebraic operations on the coeffi-
cients of the polynomial) giving the roots of a quintic polynomial (actually
Ruffini (1799) outlined a proof of the same result, but his proof had gaps
and it was not accepted by his contemporaries). In 1829, Abel gave a suf-
ficient condition that a polynomial (of any degree) have such a formula for
its roots (this theorem is the reason that, nowadays, commutative groups
are called abelian). Shortly thereafter, Galois (1831) invented groups, as-
sociated a group to each polynomial, and used properties of this group to
give, for any polynomial, a necessary and sufficient condition that there be
a formula of the desired kind for its roots, thereby completely settling the
problem. We prove these theorems here.

Symmetry

Although Galois invented groups because he needed them to describe the
behavior of polynomials, we realize today that groups are the precise way to
describe symmetry. The Greek roots of the word symmetry mean, roughly,
measuring at the same time. In ordinary parlance, there are at least two
meanings of the word, both involving an arrangement of parts somehow
balanced with respect to the whole and to each other. One of these mean-
ings attributes an aesthetic quality to the arrangement, implying that sym-

1



2 GALOIS THEORY

metry is harmonious and well-proportioned. This usage is common in
many discussions of art, and one sees it in some mathematics books as well
(e.g., Weyl’s Symmetry). Here, however, we focus on arrangements with-
out considering, for example, whether a square is more pleasing to the eye
than a rectangle.

Before giving a formal definition of symmetry, we first consider mirror
images.

c B C
Figure 1

Let F denote the figure pictured in Figure 1. If one regards the line AB as
a mirror, then the left half of F is the reflection of the right half. This fig-
ure is an example of bilateral symmetry: each point P on one side of AB
corresponds to a point P’ (its mirror image) on the other side of A B; for ex-
ample, C’ corresponds to C and D’ corresponds to D. We can describe this
symmetry in another way. Regard the plane R? as a flat transparent surface
in space, having F (without the letters) drawn on it. Imagine turning over
this surface by flipping it around the axis AB. If one’s eyes were closed
before the flip and then reopened after it, one could not know, merely by
looking at F in its new position, whether the flip had occurred. Indeed, if
F lies in the plane so that AB lies on the y-axis and CC’ lies on the x-axis,
then the linear transformation r : R? — R?, defined by (x, y) — (—x, y)
and called a reflection, carries the figure into itself; that is,

r(F)=F.

On the other hand, if T is some scalene triangle in the plane (say, with its
center at the origin), then it is easy to see that there are points P in T whose
mirror images P’ = r(P) do not lie in T'; that is, r(T) # T.

Another type of symmetry is rotational symmetry. Picture an equilateral
triangle A in the plane with its center at the origin. A (counterclockwise)



SYMMETRY 3

rotation p by 120° carries A into itself; if one’s eyes were closed before
p takes place and then reopened, one could not detect that a motion had
occurred.

B A

Before A B After

Figure 2

If we identify the plane with the complex numbers C, then the rotation
p : C — C can be described by p : rei® > rei®+27/3 and

p(A) =A.

Definition. A linear transformation o : R? — R? is called orthogonal if
it is distance preserving; that is, if |[U — V| denotes the distance between
points U and V, then

lo(U) ~a (V)| =|U -~ V|

There are distance preserving functions that are not linear transforma-
tions; for example, a translation is defined by (x, y) — (x +a,y + b)
for fixed numbers a and b; geometrically, this translation sends any vector
(x, y) into (x, y) + (a, b). (It is a theorem that every distance preserving
function is a composite of reflections, rotations, and translations and, if it
fixes the origin, then it is a composite of reflections and rotations alone.)

It can be shown that every orthogonal transformation o is a bijection,’
so that its inverse function o~! exists; moreover, one can prove that o~
is also orthogonal. The set O(2, R) of all orthogonal transformations is a
group under composition, called the real orthogonal group.

'A function f : X — Y is an injection (one also says that f is one-to-one) if dis-
tinct points have distinct images; that is, if x # x’, then f(x) # f(x'); the contrapositive,
f(x) = f(x') implies x = X', is often the more useful statement. A function f is a sur-
Jection (one also says f is onto) if, for each y € Y, there exists x € X with f(x) = y. A
function f is a bijection (one also says f is a one-to-one correspondence) if it is both an
injection and a surjection. Finally, a function f : X — Y is a bijection if and only if it has
an inverse; that is, there is a function g : ¥ — X with both composites g f and fg identity
functions.



4 GALOIS THEORY

Lemma 1. Every orthogonal transformation o preserves angles: if A, V
and B are points, then ZAVB = LA'V'B’, where A’ = o(A), V' =
o(V), and B’ = o(B).

Proof. We begin by proving the special case when V is the origin O. First,
identify a point X with the vector starting at O and ending at X. Recall
the formula relating lengths and dot product: |X|? = (X, X), so that

|A—B?=(A—B,A—- B)=|A*> - 24, B) + |B|~.

There is a similar equation for A’ and B’'. Since, by hypothesis, |A'— B’} =
{A — Bj, |A’| = |A|, and |B'| = |B], it follows that (A’, B’) = (A, B).
But (A, B) = |A||B|cos 6, where 8 = ZAOB. Therefore, ZAOB =
ZA'OB’. But O’ = 6(0) = O, because o is a linear transformation, and
so LA'OB' = ZA'O’'B’, as desired.

Now consider ZAV B, where V need not be the origin 0. If r : W >
W —V is the translation taking V to the origin, and if t' : W > W+0o (V)
is the translation taking the origin to o (V) = V', then the composite t'o T
takes

W W-ViaW-=-V)=cW)—-0a(V) >
o(W)—o(V)+o(V)=0c(W).

Thus, o (W) = t'ot(W) for all W, so that ¢ = t’ot. Since the trans-
lations t and t’ preserve all angles, not merely those with vertex at the
origin, the composite preserves ZAV B. e

The following definition of a symmetry, a common generalization of
reflections and rotations, should now seem natural.

Definition. Given a figure F in the plane,’ its symmetry group T(F) is
the family of all orthogonal transformations o : R2 — R? for which

o(F)=F.

The elements of X (F) are called symmetries.

21t is clear that these definitions can be generalized: for every n > 1, there is an
n—dimensional real orthogonal group O(n, R) consisting of all the distance preserving
linear transformations of R”?, and symmetry groups of figures in higher dimensional eu-

clidean space are defined as for planar figures.



