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PREFACE

The last two decades have produced major advances in the mathematical
theory of nonlinear wave phenomena and their applications. 1In an effort to
acquaint researchers in applied mathematics, physics, and engineering and to
stimulate further research, an NSF-CBMS regional research conference on
Nonlinear Waves and Integrable Systems was convened at East Carolina Uni-
versity in June, 1982. Many distinguished applied mathematicians and sci-
entists from all over the world participated in the conference, and provided
a digest of recent developments, open questions, and unsolved problems in
this rapidly growing and important field.

As a follow-up project, this book has developed from manuscripts sub-
mitted by renowned applied mathematicians and scientists who have made im-
portant contributions to the subject of nonlinear waves. This publication
brings together current developments in the theory and applications of non-
linear waves and solitons that are likely to determine fruitful directions
for future advanced study and research.

The book has been divided into three parts. Part I, entitled Nonlinear
Waves in Fluids, consists of seven chapters. Nonlinear Waves in Plasmas are
the contents of Part II, which has five chapters. Part IIT contains six
chapters on current results and extensions of the inverse scattering trans-
form and of evolution equations. Included also is recent progress on statis-
tical mechanics of the sine-Gordon field.

The opening chapter, by M.S. Longuet-Higgins, is devoted to recent pro-
gress in the analytical representation of overturning waves. Among the forms
suggested for the fluid flow are, for the tip of the jet, a rotating Dirichlet
hyperbola, and, for the tube, a "V 3 -ellipse" or a parametric cubic. All
these have been expressed in a semi-Lagrangian form. The semi-Lagrangian
form for the rotating hyperbola is derived by a new and simpler method, and
certain integral invariants are obtained which have the dimensions of mass,
angular momentum and energy. The relation of these to the previously known
constants of integration is discussed, and directions for further generaliza-
tions are indicated. Also, a new class of polynomial solutions of the semi-
Lagrangian boundary conditions is derived. These, or their generalizations,
may be of use when combining different solutions so as to form a complete
description of the overturning wave. 1In Chapter 2, R.S. Johnson describes
how the classical problem of inviscid water waves is used as the vehicle for
introducing various forms of the Korteweg-deVries (KdV) and nonlinear

Schrddinger (NLS) equations. The appropriate equations in one and two
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dimensions are given with some discussion on the effect of shear and vari-
able depth. It is shown that KdV and NLS equations match in a suitable limit
of parameter space, and the various KdV solutions-notably similarity-are
themselves matched to corresponding near fields. Some other equations based
on more complicated physics are mentioned together with a brief comment on
two-dimensional problems with shear or variable depth. In Chapter 35 iRs
Grimshaw discusses canonical equations for the evolution of long nonlinear
solitary waves in slowly varying environments. These equations are of KdV
type and include the effects of dissipation. The slowly varying solitary
wave is constructed as an asymptotic solution of these equations by a multi-
scale perturbation expansion, and is shown to consist of a solitary wave with
slowly varying amplitude and trailing shelf. The specific case of a solitary
wave decaying due to dissipation is described in detail. Chapter 4, by

M.C. Shen, is concerned with some approximate equations for the study of non-
linear water waves in a channel of variable cross section. He gives a sys-
tem of shallow water equations for finite amplitude waves, and a KdV equation
with variable coefficients for small amplitude waves. Some problems deserving
more study are mentioned in this chapter. Chapter 5, by I.M. Moroz and J.
Brindley, is concerned with the derivation of a system of evolution equations
for slowly varying amplitude of a baroclinic wave packet. The self-induced
transparency, sine-Gordon and nonlinear Schrddinger equations, all of which
possess soliton solutions, each arise for different inviscid limits. The pre-
sence of viscosity, however, alters the form of the evolution equations and
changes the character of the solutions from highly predictable soliton solu-
tions to unpredictable chaotic solutions. When viscosity is weak, equations
related to the Lorenz attractor equations obtain, while for strong viscosity
the Ginzburg-Landau equation obtains. P.J. Bryant, in Chapter 6, discusses
specific wave geometries which occur in deep water and are calculated by a
numerical method based on Fourier transforms. Examples are presented of
permanent waves and wave groups of permanent envelope in two and three
dimensions without restriction on wave height. Although the method is ap-
plied here only to gravity waves in deep water, it may be generalized tc fur-
ther forms of nonlinear wave motion. Chapter 7, by Alex Craik, deals with
linear, or direct, resonance of two waves, and weakly nonlinear three-wave
resonance. Special attention is given to non-conservative three-wave sys-
tems, for which the mathematical theory is least developed. In addition,
subharmonic resonance and further complications involving quadratic inter-

action of more than three waves are discussed.
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In Chapter 8, N.E. Andreev, V.P. Silin, and P.V. Silin discuss various
aspects of the stationary theory of the interaction of an electromagnetic
field with moving plasmas, with special attention to the field self-restric-
tion phenomena in supersonic plasma. The authors also suggest a direction
for further research and study on the theory. In Chapter 9, P.C. Clemmow
discusses finite-amplitude plane waves travelling with uniform speed through
a cold homogeneous plasma in a Lorentz frame of reference. This problem can
be reduced to solving a single nonlinear ordinary vector differential equa-
tion. Periodic solutions of this equation are investigated. It is found
that some new results for propagation in a direction perpendicular to the
ambient magnetostatic field go some way towards elucidating the conditions
under which various types of wave can exist. H. Okuda presents the results
of analytic theory as well as of numerical simulations on electrostatic ion
cyclotron (EIC) waves in Chapter 10. In Chapter 11, P.K. Shukla presents
an evaluative review on theories of solitons in plasma physics along with a
discussion on some open questions and unsolved problems. Chapter 12, by
R.J. Gribben, is concerned with uniformly-valid perturbations of uniform,
monochromatic nonlinear, periodic wave solutions of the Vlasov and Poisson
equations in one space dimension in the absence of a magnetic field. Also,
a theory for the propagation of slowly varying nonlinear waves in a non-uni-
form plasma is presented. Appropriate basic uniform wave solutions are re-
viewed, some general consequences of the theory given, and current work de-
scribed, including solutions obtained for particular cases, and directions
in which further study might proceed.

In Chapter 13, A.S. Fokas describes some recent results and develop-
ments on the extension of the inverse scattering transform to solve nonlinear
evolution equations in one time and two space dimensions. Based on the
Schrédinger partial differential operator as a simple mathematical model,

A. Degasperis studies linear evolution equations associated with isospectral
evolutions of differential operators in Chapter 14. He also discusses how

to solve the corresponding initial valué problem using the spectral properties
of the Schrddinger operator. Then the scattering operator expression is
divided in the case of a linear evolution equation associated with a pure
many-soliton solution. Some natural extensions and generalizations of these
results are pointed out. In Chapter 15, Peter Schuur develops an inverse
scattering formalism for the NxN matrix Schrddinger equation with arbitrary,
in general non-Hermitian potential matrix, decaying sufficiently rapidly for
|x| + ® ., A general nth order spectral transform and a technique for in-

verting this transform are developed by P.J. Caudrey in Chapter 16. The
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use of the whole procedure is illustrated by the solution of a system of
nonlinear Klein-Gordon equations. 1In Chapter 17, A. Thyagaraja gives an
elaborate account of recurrence phenomena and the number of effective de-
grees of freedom in nonlinear wave motion. The relationships between re-
currence phenomena and different motions of stability due to Lagrange,
Poisson, and Lyapunov are described. The chapter concludes with a brief
discussion of some unsolved problems relevant to applications. The final
chapter, by R.K. Bullough, D.J. Pilling, and J. Timonen is devoted to the
statistical mechanics of the sine-Gordon (s-G) field. Functional integrals
for the classical and quantum partition functions Z for the s-G field ¢(x,t)
are calculated in different ways including methods which exploit the com-
plete integrability of the classical s-G and its canonical transformation to
a Hamiltonian involving action variables alone. The free Klein-Gordon field
poses no problems. But discrepant results for the s-G kinks and anti-kinks
are explained by the observation that the functional integrals for Z are
defined best by discretization to a lattice of spacing a on finite support L.
The s-G problem then becomes that of a sequence of problems involving a
finite number of degrees of freedom; and for L » «» and a-» Qkinks and anti-
kinks are dressed by coupled K-G modes. These dressings are calculated in
different ways both quantally and in classical limit, and connections estab-
lished with kinks and anti-kinks are largely resolved, but quantum WKB
methods, for example, pose problems of their own.

I am grateful to the authors for their cooperation and contributions,
and hope that this monograph brings together all of the most important, recent
developments in the mathematical theory and physical applications of nonlinear
waves and solitons in fluids and plasmas, besides describing all major current
research on the inverse scattering transform. I want the reader to share in
the excitement of present day research in this rapidly growing subject and
to become stimulated to explore nonlinear phenomena.

I express my grateful thanks to Dr. Carroll A. Webber for his help in
improving the readability of several papers. I am thankful to my wife for
her constant encouragement during the preparation of the book. In conclu-
sion, I wish to express my sincere thanks to the Cambridge University Press

for publishing the monograph.

LOKENATH DEBNATH
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CHAPTER 1

TOWARDS THE ANALYTIC DESCRIPTION OF
OVERTURNING WAVES

MICHAEL S. LONGUET-HIGGINS

Department of Applied Mathematics and Theoretical Physics,
Silver Street, Cambridge, England and
Institute of Oceanographic Sciences, Wormley, Godalming, Surrey

1. TINTRODUCTION.
Till recently, one notable hiatus in the theory of surface waves was

the absence of any satisfactory analysis to describe an overturning wave.

In this category we include both the well-known "plunging breaker" and
also any standing or partially reflected wave which produces a symmetric
or an asymmetric jet, with particle velocities sometimes much exceeding
the linear phase-speed.

A first attempt to describe the jet from a two-dimensional standing
wave was made by Longuet-Higgins (1972), who introduced the "Dirichlet
hyperbola™, a flow in which any cross-section of the free surface takes
the form of a hyperbola with varying angle between the asymptotes. Numer-
ical experiments by McIver and Peregrine (1981) have shown this solution
to fit their calculations quite well. The solution was further analysed
in a second paper (Longuet-Higgins, 1976) where a limiting form, the
"Dirichlet parabola", was shown to be a member of a wider class of self-
similar flows in two and three dimensions. Using a formalism introduced
by John (1953) for irrotational flows in two dimensions, the author also
showed the Dirichlet parabola to be one of a more general class of self-
similar flows having a time-dependent free surface.

All the above flows were gravity-free, that is to say they did not
involve g explicitly; they are essentially descriptions of a rapidly
evolving flow seen in a frame of reference which itself is in free-fall.

A useful advance came with the development of a numerical time-stepping
technique for unsteady gravity waves by Longuet-Higgins and Cokelet (1976,
1978). As later refined and modified by Vinje and Brevig (1981), McIver
and Peregrine (1981) and others, this has given accurate and reproducible
results for overturning waves, with which analytic expressions can be
compared.

A further advance on the analytic front came with the introduction
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Figure 1 (after Longuet-Higgins 1980b). Example of the free surface in a
rotating hyperbolic flow when W = 0.30 (see equation (6.15)). The origin
0 is in a free-fall trajectory.
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by Longuet-Higgins (1980a) of a general technique for describing free-surface

flows, that is flows satisfying the two boundary conditions
p=20 and Dp/Dt = 0 (1.1)

at a free surface. Particular attention was paid to the parametric repre-

sentation of the flow in a form
X = X@,t) , z = 2(,t) (1.2)

where both the complex coordinate z = x + iy and the velocity potential
are expressed as functions of the intermediate complex variable w and the
time t. This was a generalisation of the formalism of F. John (1953), in
which 0w was, however, assumed to be Lagrangian at the free surface, though
not elsewhere in the fluid. For this reason John's formalism was called
"semi-Lagrangian'.

The more general formalism was put to immediate use in a second paper
(Longuet-Higgins 1980b) in which the "Dirichlet hyperbola" of previous
papers was generalised to include "rotating hyperbolic flow". Besides the
time-variation of the asymptotes, the principal axes were allowed to rotate,
as shown in Figure 1. This solution, in which the velocity potential X
was given in closed form, allowed for the first time a convincing possible
description of the later stages of a plunging jet. The initial evolution
of the jet, however, was not included. 1In a third paper (Longuet-Higgins
198la) the author made use of the more general (non-Johnian) formalism to
derive a plausible analytic description of the development of the flow, up
to about the instant when the free surface first becomes vertical. This

description introduced the approximate potential
z 3 4 g2 =
X = E-ig W2 + Up* + 2A% (1.3)
where U is a constant, A is a linear function of the time and
z = w2 . (1.4)

The first term on the right of (1.3) by itself represents Stokes's 120°
corner-flow. The third term represents a finite-amplitude perturbation of
the Stokes flow. The expression (1.3) gives a rather convincing represen-
tation of the initial development of the breaking wave (see Figure 2).
However, the task of matching this flow to the later stages, including the
time-dependent jet, remains still to be accomplished.

In another direction New (1981) found empirically that in some of his
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Figure 2 (from Longuet-Higgins 1981).

Initial development of the over-

turning flow as given by equations (1.3) and (1.4) when g=1, U= (-1,0.5),

and A(t) is chosen so as to minimise f(Dp/Dt)zds on p = 0. The origin O

is in uniform motion; the solution includes gravity.
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numerical calculations of breaking waves the forward face, or "tube", of
the breaker was remarkably well fitted by part of the circumference of an
ellipse, with axes in the ratio V3:1. Whereupon Longuet-Higgins (1981b,
1982) pointed out that the free surface was even better fitted (see Figure 3)

by the cubic curve:
1
z = itwd + 3t20w2 - it3p - & th (1.5)

which is a limiting case of one of the self-similar flows found previously
(Longuet-Higgins 1976). Moreover the flow (1.5) contains another surface
p = 0 which comes close to the rear surface of the wave, though the second
boundary condition Dp/Dt = O is not satisfied on it. Nevertheless there
was perhaps some possibility that by suitably perturbing the flow (1.5)
and by matching it to a rotating hyperbolic flow near the tip of the jet
a complete solution might be found. Since (1.5) is expressed in semi-
Lagrangian form a next step would be to express the rotating hyperbolic flow
in semi-Lagrangian form also.

This has in fact been done in a very recent paper (Longuet-Higgins
1983) where the rotating hyperbolic flow is shown to be expressible in the

form
z = F(t)cosh w + G(t)sinhw (1.6)

the functions F and G being related to the solutions of a kiccati equation.
The corresponding particle trajectories have also been computed.

Meanwhile in still unpublished work New (1983) has succeeded in finding
a flow, in semi-Lagrangian representation, which is outside his elliptical
free surface, and he has shown that the velocity field resembles that in
numerically calculated waves, over about half the circumference of the el-
lipse. Unlike the cubic (1.5), the elliptical model cannot of course de-
scribe the velocity discontinuity which must occur when the jet meets the
forward face of the wave. Greenhow (1983) has made further progress in
deriving a semi-Lagrangian expression, polynomial in w, which for large
values of t approximates the hyperbolic jet on the one hand and New's el-
lipse on the other. His expression also provides a "rear face" to the wave,
but is still gravity-free.

The purpose of the present paper is twofold: first, to derive the
semi-Lagrangian representation for the rotating hyperbolic flow in an alter-
native, and perhaps simpler, way than in Longuet-Higgins (1983). The
present method has the advantage that it brings to light naturally some
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Figure 3 (after Longuet-Higgins 1982). Profile of the surfaces p =0 in
the cubic flow (1.4)(a) when t = 1.0; (b) when t = 0.5. On the curves s o
both p and Dp/Dt vanish. On II only p vanishes. The broken curve IIT
indicates a possible perturbation.
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integral invariants «, u, and v which in turn provide constraints on the
functions F and G. It is shown how k, u, and v are related to the constants
of integration found in earlier papers. Moreover the method suggests some
possible generalizations.

A second purpose is to give some exact polynomial solutions to one of
the problems investigated by Greenhow (1983). The same methods may, in
turn, be employed in other, more general, problems occuring in the same
context.

2. SEMI-LAGRANGIAN COORDINATES.

In the semi-Lagrangian representation of irrotational, free-surface

flows in two dimensions, the coordinate z = x + iy is expressed as an

analytic function of a complex parameter w and the time t:
z = z(w,t) (2.1)

such that on the free surface w is real (w = w*) and Lagrangian (Dw/Dt = 0).
The condition that the pressure be constant along this surface can then be

expressed as

By = & irzm (2.2)

where g denotes gravity (the x-axis being vertically downwards) and r(w,t)
is some function that must be real when w is real. If gravity is negli-
gible, or if the motion is viewed in a free-fall reference frame, then (2.2)

reduces to

2o = irzm (2.3)

In the interior of the fluid, the coordinate w is generally not
Lagrangian, and the velocity is given by zt(w*,t), which of course equals
zt(w,t) on the boundary. The vanishing of the derivative 2, implies a
singularity in the flow field, unless at the same point [zmt(w*,t)]*
vanishes also, hence z;t(w,t) = 0. In other words

= i * =
z, 0 implies Zoe 0 (2.4)

everywhere in the interior.
When equations (2.3) and (2.4) are satisfied we can, if necessary,

find a velocity potential ¥ (w,t) throughout the fluid by calculating

x(w,t) = [ 2} (w,t) z (0, t)dw (2.5)

for then
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Ry ™ xw/zw = z: (2.6)

as required.
3. ROTATING HYPERBOLIC FLOW.

As a very simple form of solution suppose that

z = aw - buo_1 (3.1)

where a(t) and b(t) are some functions of the time, to be determined. This

will satisfy equation (2.3) with r = wR(t) provided

-1 _ -1
a o - bttw = iR(aw + bw ) . (3.2)

and R is real. Also from equation (2.4) the two equations

5 & B> = G
o e (3:3
at + btw =0

are to be satisified simultaneously, if the corresponding point z(w,t) is
to lie within the fluid.

Starting from equations (3.2) and (3.3) we shall deduce a chain of
results leading eventually to a differential equation for the unknown
function R(t).

On equating coefficients of w and w_l in equation (3.2) we have

att = iRa

(3.4)

b

- -iRb

where R is not necessarily real. On eliminating R from these two equations

we get

abtt + attb =0 . 3.5)

Again, on eliminating w from equations (3.3) we have
* _ ok o _
abt ay b=0. (3.6)
From (3.6) and its complex conjugate there follows

(ab* - a*b)t =0 5 (3.7)

hence

ab* - a*h = constant = ik (3.8)



