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Preface

In 1963, David G. Luenberger initiated the theory of observers for the state
reconstruction of linear dynamical systems. Since then, owing to its utility and
its intimate connection with fundamental system concepts, observer theory
continues to be a fruitful area of research and has been substantially developed
in many different directions. In view of this, the observer has come to take its
pride of place in linear multivariable control alongside the optimal linear
regulator and the Kalman filter. Notwithstanding the importance of the
observer and its attendant vast literature, there exists, at the time of writing, no
single text dedicated to the subject.

My aim, in writing this monograph, has been to remedy this omission by
presenting a comprehensive and unified theory of observers for continuous-
time and discrete-time linear systems. The book is intended for post-graduate
students and researchers specializing in control systems, now a core subject in
a number of disciplines. Forming, as it does, a self-contained volume it should
also be of service to control engineers primarily interested in applications, and
to mathematicians with some exposure to control problems.

The major thrust in the development of observers for multivariable linear
causal systems came from the introduction of state—space methods in the time-
domain by Kalman in 1960. In the state-space approach, the dynamic
behaviour of a system at any given instant is completely described in a finite-
dimensional setting by the system state vector. The immediate impact of
state-space methods was the strikingly direct resolution of many long-
standing problems of control in a new multivariable system context; for
example, pole-shifting compensation, deadbeat control, optimal linear re-
gulator design and non-interacting control. These controllers are normally of
the linear state feedback type and, if they are to be implemented, call for the
complete availability of the state vector of the system. It is frequently the case,
however, that even in low-order systems it is either impossible or inappro-
priate, from practical considerations, to measure all the elements of the system
state vector. If one is to retain the many useful properties of linear state
feedback control, it is necessary to overcome this problem of incomplete state
information. The observer provides an elegant and practical solution to this
problem. Now, an observer is an auxiliary dynamic system that reconstructs
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the state vector of the original system on the basis of the inputs and outputs
of the original system. The reconstructed state vector is then substituted for
the inaccessible system state in the usual linear state feedback control law.
In keeping with the title “observers for linear systems”, the framework is a
finite-dimensional linear system one. Although the theory is mainly described
in a linear state-space setting, frequent opportunity is taken to develop
multivariable transfer-function methods and interpretations; so important if
the designer is to fully exploit the structural properties of observers in a unified
manner. Bearing in mind that an observer is itself a dynamic system and that it
invariably constitutes the dynamic part of an otherwise static feedback control
scheme, there is a marked interplay between observers, linear system theory
and dynamic feedback compensation. This interaction is exploited in order to
take full advantage of the latest and most significant advances in these subject
areas. In particular, much use is made of a recurrent duality between state
feedback control and state observation, and the fact that, for the most part,
continuous-time and discrete-time problems are algebraically equivalent.
The text is organized as follows. Chapter 1 reviews the fundamental
structural properties, namely observability and state reconstructability, that a
system must possess for a corresponding state observer to exist. The basic
theory of full-order observers, minimal-order observers and a special type of
controller known as a dual-observer is introduced. In Chapter 2, the
redundancy inherent in the structure of the minimal-order state observer is
reduced by exhibiting the original system in various appropriate state-spaces.
Chapter 3 examines the reconstruction of a linear function of the system state
vector, typically a linear feedback control law, by an observer of further
reduced dimension. In common with other chapters, the problem has two
main aspects: the determination of the minimal order of the observer and
stabilization of the observer. Chapter 4 explores further the possibilities of
linear feedback control for systems with inaccessible state. Of particular
interest is the construction of a dynamical controller based on the minimal-
order state observer. The problem of observer design in order to reconstruct
either the state vector or a linear state function of a discrete-time linear system
in a minimum number of time steps is the subject of Chapter 5. Chapter 6
considers the problem of estimating the state of continuous-time and discrete-
time linear stochastic systems in a least-square error sense, particularly where
some but not all of the system measurements are noise-free. An important
special case is when all the measurements contain additive white noise, in
which case the optimal estimator is identical to the Kalman filter. In Chapter 7,
adaptive observers and adaptive observer-based controllers are developed for
continuous-time linear systems where a priori knowledge of the system
parameters is lacking. The basic idea is that the observer estimates the
unknown system parameters as well as the state variables of the system.
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Chapter 8 undertakes a thorough examination of the complementary role
multivariable frequency-response methods and state—space techniques have
to play in observer-based system compensation. Using a complex-variable
approach, some of the difficulties that may arise in the exclusive pursuit of
time-domain methods of design, from the point of view of system robustness
and controller instabilities, are highlighted. In Chapter 9, a polynomial-matrix
approach is adopted for the synthesis of an observer-based compensator that
further serves as a unifying link between transfer-function methods and
state—space techniques. Chapter 10 establishes synthesis properties of state
observers and linear function observers in terms of a few basic system concepts
exhibited in a geometric state-space setting. The book closes in Chapter 11
with a brief discussion of extensions and applications.

Pains have been taken to make the text accessible to both engineers and
mathematicians. Some acquaintance with linear algebra, the rudiments of
linear dynamic systems and elementary probability theory is assumed. For
ease of reference, however, a brief review of the more relevant background
material is presented in two appendixes. Theorems, Propositions, etc. have
been used to convey major results and summaries in a concise and self-
contained fashion. The guiding idea is not rigour per se, but rather clarity of
exposition. Proofs are usually given unless precluded by excessive length or
complexity, in which case the appropriate reference is cited. It is intended that
the notes and references which form an integral part of the text, should place
the reader in a favourable position to explore the journal literature.

Liverpool J. O’Reilly
February 1983
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Chapter 1

Elementary System and Observer Theory

1.1 INTRODUCTION

Since the re-emergence of state—space methods to form a direct multivariable
approach to linear control system synthesis and design, a host of controllers
now exist to meet various qualitative and quantitative criteria including
system stability and optimality. A common feature of these control schemes is
the assumption that the system state vector is available for feedback control
purposes. The fact that complex multivariable systems rarely satisfy this
assumption necessitates either a radical revision of the state-space method, at
the loss of its most favourable properties, or the reconstruction of the missing
state variables.

Adopting the latter approach, the state observation problem centres on the
construction of an auxiliary dynamic system, known as a state reconstructor
or observer, driven by the available system inputs and outputs. A block
diagram of the open-loop system state reconstruction prcess is presented in
Fig. 1.1. I, as is usually the case, the control strategy is of the linear state
feedback type u(t) = Fx(t), the observer can be regarded as forming part of a
linear feedback compensation scheme used to generate the desired control
approximation Fx(t). This closed-loop observer-system configuration is
depicted in Fig. 1.2.

SYSTEM 0BSERVER
System ) System Reconstructea
input Inaccessible output y state &

system state x

Fig. 1.1 Open-loop system state reconstruction.
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SYSTEM

Reference System System

input in
put ¥ ,mput : Inaccessible outpt y

system state x

+

F)l(\ Observer - based
controller

Fig. 1.2 Closed-loop observer-based control system.

The present chapter begins with an introduction to the state-space
description of linear dynamical systems. Section 1.3 reviews the fundamental
structural properties, namely controllability, reachability, observability and
state reconstructability, that a linear system must possess for state feedback
control and asymptotic state reconstruction by an observer. In Section 1.5 and
Secton 1.6, the repective problems of linear state feedback control with
accessible state vector and with inaccessible state vector are discussed. The
resolution of the latter problem involves the asymptotic reconstruction of the
inaccessible state variables by an observer of dynamic order equal to that of
the original system. Section 1.7 sees a major simplification in the reduction of
observer order by the number of available measurements of the system state
variables to yield a state observer of minimal order. Fortunately, especially
from implementation considerations, the parameters of most systems can
reasonably be assumed to be constant. In this case, the appropriate minimal-
order or full-order observer is time-invariant. Minimal-order observers for
discrete-time linear systems are treated in Section 1.8. Finally, in Section 1.9 we
reverse the fundamental process of one system observing another system to
obtain a special type of controller known as a dual-observer.

1.2 LINEAR STATE-SPACE SYSTEMS

The dynamic behaviour of many systems at any time can be described by the
continuous-time finite-dimensional linear system model
x(t) = A(0)x(t) + B()u(t), x(to) = xo (1.1)

y(t) = Cle)x(t)* _ (12)

* The more general output description y = Cx + Hu is readily accommodated by redefining
Equation (1.2) as j £ y — Hu = Cx.
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where x(t) € R" is the system state, x(t,) € R" is the state at the initial time ¢,
u(t)eR" is the control input, and the output y(t)e R™ represents those linear
combinations of the state x(¢) available for measurement. The matrices A(t),
B(t) and C(t) are assumed to have compatible dimensions and to be
continuous and bounded. Throughout the text, the term “linear system” is
taken to mean a finite-dimensional linear dynamical system, it being under-
stood that such a linear system is in fact an idealized (mathematical) model of
an actual physical system. A solution of the vector differential equation (1.1) is
given by the well-known variation of constants formula

x(t) = O(t, ty)x(ty) + J ®(t, A)B(A)u(d) dA (1.3)
lo

where the transition matrix ®(t, t,) is the solution of the matrix differential

equation

(1, 1) = A@)D(t, 15), D(tg, to) = I, (1.4)

It is remarked that (1.3) holds for all t and t,, and not merely for ¢ > ¢,. For the
most part we shall deal with linear constant systems, otherwise known as
linear time-invariant systems in which the defining matrices 4, B and C are
independent of time ¢.

x(t) = Ax(t)+ Bu(t) (1.5)
y(t) = Cx(1). (1.6)

The transition matrix of (1.5) is given by
D(t, ty) = exp A(t — to) (1.7

where the exponential function exp A(t — t,) is defined by the absolutely
convergent power series

axp Al — tg) = i t't") (1.8)

i=0

1.2.1 Linearization

Itis invariably the case that the true dynamical system, for which (1.1) and (1.2)
represents a linear model, is in fact non-linear and is typically of the form

x(t) = f[x(), u(t), t] (1.9)
y(t) = g[x(), t]. (1.10)

Nonetheless, a linear model of the form of (1.1) and (1.2) can be made to serve
as an extremely useful approximation to the non-linear system (1.9) and (1.10)
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by linearizing (1.9) and (1.10) about a nominal state trajectory x,(t) and a
nominal input u,(t) where

Xo(t) = fxo(t), ug(t), 1] (1.11)
Yo(t) = y[x,(t), t]. (1.12)

That s, if one considers small perturbations dx(t) 2 x(t) — xo(t)and du = u(t)
— uo(r), one has from the Taylor’s series expansions of (1.9) and (1.10) about
[XO([)s uO(t)a t] that

SIx(@), u(t), t] = fxo(t), ug(t), t] + Ay(t) dx(1)
+ By () dult) + ao[x(t), u(t), 1] (1.13)
glx(t), t] = g[xo(t), t] + Colt) 5x(t) + Bo[Sx(t), £] (1.14)

where o,[0x(t), du(t), t] and B,[dx(t), t] denote second and higher-order
terms in the Taylor series expansions. The matrices

2 ;

402 Bd (q (1.15)
ox [xosu0nt] ou [xo-0.1]
2

Co) 2 (1.16)
ox [xouttot]

are Jacobian matrices of appropriate dimensions, evaluated at the known
system nominal values [x,(t), uy(t), t]. From (1.9) to (1.14), neglecting second
and higher-order expansion terms, it is readily deduced that

85X(t) = A1) 5x(t) + By dult) (1.17)
Sy(t) = Colt) ox(t). (1.18)

The linearized perturbation model (1.17) and (1.18) is of the same linear form
as (1.1) and (1.2), and yields a close approximation to the true non-linear
system provided the higher-order expansion terms og[dx(t), du(t), {] and
Bolx(¢), t] are small for all time t. We shall see presently how the validity of the
linearized perturbation model, as characterized by the “smallness” of o, and f8,,
is reinforced by the (linear) control objective of choosing du(t) so as to regulate
0x(t) to zero. Henceforth, our attention is focussed on the linear system model
(1.1)and (1.2), bearing in mind that it may have arisen in the first place from the
linearization of a non-linear process model just described.

1.2.2  Stability

A crucial question in systems theory is whether solutions of the non-linear
system of differential equations (1.9) or the linear system of differential



