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Preface

Interfacial phenomena are commonplace in physics, chemistry, biology, and
in various disciplines bridging these fields. They occur whenever a continuum
is present that can exist in at least two different chemical or physical “states,”
and there is some mechanism that generates or enforces a spatial separation
between these states. The separation boundary is then called an interface. In
the examples studied here, the separation boundary and its internal structure
result from the balance between two opposing tendencies: a diffusive effect
that attempts to mix and smooth the properties of the material and a physical
or chemical mechanism that works to drive it to one or the other pure state.

This latter is an ‘“‘unmixing” tendency. In our cases, it is one of the
following: (1) a chemical kinetic mechanism with two stable steady states or
two attracting slow manifolds in concentration space; (2) a double-well
potential that drives a substance into one of two possible phases, such as solid
or liquid; (3) an imposed electric field that affects different kinds of ions in
different ways; (4) a chemical reaction rate that is so sensitive to temperature
that a temperature isocline can serve as an interface separating (a) the region
in space where the reaction (and other reactions it triggers) has gone to
completion, from (b) the other region, where the reaction is so slow due to the
lower temperature that it can be neglected; or finally (5) a very complex
biophysical process responsible for the triggering of physical change in
biological tissue, followed by its recovery to its original state.

This fifth mechanism, together with the diffusive-type process alluded to
above, is responsible for the propagation of signals along a nerve axon or
cardiac tissue, and is quite commonly modeled by systems of the type studied
in Chap. 4. The Belousov—Zhabotinskii and other excitable chemical reagents
subject to mechanism (1) above are appropriately modeled the same way, and
are also treated in Chap. 4.

The separation of ions due to the electric field mentioned in (3) is explained
in Chap. 3. The thermal propagation of flames, caused by mechanism (4) plus
the heat release of the reaction and the diffusion of heat and material species,
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is the subject of Chap. 2. A phase change model with far-reaching conse-
quences is considered in Chap. 1, §3, and in Chap. 1, §2, we explain an equation
that has been used to study waves in population genetics, physiology, and
nonlinear transmission lines, and is an essential ingredient for the analysis in
Chap. 4. Separations due to a diffusive shock layer are briefly covered in Chap.
1, §4.

In view of all of this, it must be emphasized that this work is primarily
mathematical. One of the reasons, in fact, for its existence is that a certain
body of techniques and concepts forms the basis of the mathematical study of
most of these types of interfaces. This common ground consists of the
asymptotic study of internal layers, and is introduced in Chap. 1, §1.

There are important differences, however, among the applications treated
here. In fact, the bulk of the monograph by far is devoted to problems and
phenomena that are particular to the various contexts.

In all cases, the most interesting phenomena have to do with the motion of
the interfaces. In the case of flame interfaces (called layers), the tendency for
irregular motion leads to well-known stability considerations, as well as to an
excellent example of the power of multiple scaling techniques for determining
their motion near the onset of instability. The latter topic is only briefly
mentioned in Chap. 2, §2, but the difficult linear stability analysis is covered in
great detail there.

In the case of the chemical and biophysical interfaces studied in Chap. 4,
their motion leads to such fascinating spatiotemporal structures as rotating
spirals and expanding rings. Scroll rings, the three-dimensional analogues of
spirals, are not covered, but conceptually are subject to the same
considerations.

The basis of this monograph was a set of notes prepared for three
minicourses which I gave in 1987: a CBMS Conference on Nonlinear Waves in
Little Cottonwood Canyon, Utah, in May; a series of lectures at Peking
University and the Institute of Mathematics, Beijing, also in May; and a Rocky
Mountain Mathematical Consortium summer course in Laramie, Wyoming, in
July. I am very grateful to the organizers of these courses: Peter Bates at
Brigham Young University, Ye Qi-xiao and Hsiao Ling in Beijing, and Duane
Porter at the University of Wyoming. The original notes were written while I
was a Visiting Professor at Brigham Young University. I am also grateful to
the many people who read parts of the notes and made corrections. Finally,
thanks go to the National Science Foundation, which makes CBMS con-
ferences such as the one in Utah possible.

Most of this material exclusive of Chap. 1, §1, Chap. 2, §§1,2, and Chap. 4,
§4C, represents research supported by National Science Foundation grants
DMS-8202056 and DMS-8703247, and Air Force Office of Scientific Research
grant F4962086C0130.
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CHAPTER 1

Internal Layers

1. Dynamics of internal layers: Asymptotics and matching.

Since most of the nonlinear waves considered in these lectures are interfaces
in the form of internal layers, it is appropriate that we begin by discussing the
latter in general terms. Asymptotic methods somewhat related to the ones
given here appear in a number of books, such as [Ec].

Imagine some smooth state variable u, a function of space and time, taking
values in R™, and evolving according to some system of differential equations.
For simplicity we will assume space to be two-dimensional. This dynamical
process also depends, we suppose, on a small positive parameter €, SO u does
as well: u =u(x, t; €), x = (x;, x).

We will study several situations in which the dynamical process generates
and preserves a moving internal layer, which we will call an interface, of width
O(€). The generation process is interesting and in most cases has been studied
little; we overlook that part here and focus on the dynamics of a fully
developed layer. This layer is located on a curve I'(¢; €) in the plane (its exact
relation to T will be made precise in each case). It will be convenient to track
the movement of I' by considering the evolution of the function r(x, ¢; €)
defined to be * the distance from x to I'. Thus

(1) I(t; €)={r(x, t; €) =0}.

We suppose that I' divides the plane into two parts: 9., where r is taken to be
positive, and 9_, where r is negative. Further assumptions are as follows.

The state function may be approximated by truncations of a formal power
series

2) u(x, t) =32€"u,(x, t)

in regions away from the interface, and of another formal power series near I.

The higher the truncation, of course, the better the approximation. To be

more specific, let Ts(¢; €) = {|r| = 8} and D, (¢; €) be the complement of T in

the plane. Let u™ denote the summation on the right of (2) up to terms of
1



2 CHAPTER 1

order €. Then for some 8(N, €) to be specified below, with §—0 as € — 0,
we assume

lu —u™| =0(e"') as e—0

uniformly for (x, t) € Ds(n,). This is to be true for all N up to some integer N,
that depends on the context. The same approximability relation is to hold for
the corresponding derivatives of u and u™) up to some order, again depending
on the context.

The “outer” functions u,, may be discontinuous or otherwise nonsmooth on
I', but are smooth in 9, uniformly up to T, and are also smooth in 9_
uniformly up to I

The representation of u near I' is as follows. We consider a local orthogonal
coordinate system (r(x, ¢; €), s(x, ¢; €)) in a neighborhood of I'(¢; €). Here s,
for x on I, represents arclength along I'. We then introduce a stretched
variable

@3) oG, 1; €)= B 5 E)

and think of the same function u now expressed in terms of the coordinates p°
and s: u(x,t;€)=U(p,s, t;€) in that neighborhood. Again, U and its
derivatives are supposed to be approximable by truncations of a formal series

4 U=Ze"U,(p, s, t),

i.e., by polynomials in € with coefficients depending only on p, s, and ¢. These
are the “inner” approximations. To be more precise again, we suppose there is
a function K(e, N) with a property to be given later such that K— » as € —»0,
so that the approximation of U and its derivatives by the N-truncation of (4)
has an error =O(€™*") uniformly for |p| < K(€, N).

Denote the normal velocity —(3r/dt)(s, t; €) = —r, of the interface at the
point s in the direction of positive r by the function v(s, ¢; €). Assume that T
depends uniformly smoothly on ¢ and €; it then follows that v and r can be
approximated by truncated power series, uniformly in (s, ¢) in the case of v
and uniformly in a neighborhood of I in the case of r. Note that knowledge of
the function r determines s, in view of the orthogonality of the coordinate
system and the fact that s measures arclength. The function s also may be
approximated by a polynomial in €.

We often will denote partial derivatives by J,, etc. The symbol 3,, will
denote the second partial with respect to p.

The following relations between the outer functions u; and the inner
functions U; are to hold. Their justification on the basis of the above
assumptions for a particular choice of é and K will be given below. They are
called “matching conditions.” In the following the outer functions will be
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written as functions of r and s rather than x. As p— o,

(Sa) Uo(:tw, S, t) = uo(oi, s, t),
(5b) Ui(p, s, t) =u,(0L, s, t) + p3,up(0, s, t) + 0(1),
(5¢) Usx(p, s, t) = uy + pd,uy + 3p23,,uy + 0(1),

etc. The arguments of the functions on the right of (5c) are the same as in (5b).
Here the notation 8,uy(04, s, t), for example, denotes the limit, as T is
approached from &, at the point s, of the normal derivative of the function u,
in the direction of increasing r. Sometimes the symbol 8,uy(T'+, ¢) will be used
instead.

In each case studied here, the various coefficients U, and u, will be subject
to determination from differential equations under suitable boundary condi-
tions. The matching relations (5) will be instrumental in defining the desired
solutions of these problems.

The various problems for the U, and u,, will constitute formal reductions to
various orders of refinement of our original evolution model for u, and in this
sense will be alternate models for the natural phenomenon being described by
that original problem.

One may object justifiably at this point to the fact that the approximability
assumptions we have made in the inner and outer regions are very restrictive.
How do we know a priori that this approach can be followed in any particular
circumstance? Of course we do not, but experience indicates that it will be
successful in many cases, including those studied here. Formal verification of
these assumptions would be accomplished by being able to construct,
reasonably and systematically, the various inner and outer functions. Rigorous
verification would consist of proving that the approximations so constructed
are indeed close to an exact solution of the original problem. This latter step is
only rarely done; early examples of where it was done for stationary interfaces
can be found in [FGr], [Fi74], [Fi76a], and [MTH)]. Important recent results
for quite general systems with internal layers were obtained by Lin [Lin]. The
usual practice in the applied literature (at least implicitly) is to accept and
interpret the problems for the various approximations as being the alternate
models mentioned above.

Certain properties of the local coordinate system (r, s) are appropriately
stated here, since they will be useful later on several occasions.

On I', we have

(6) [IVrl=1 and Ar=k,

where A and V refer only to the spatial variable x, and x is the curvature of T,
counted as positive if I is concave as seen from 9_. The first equation in (6),
in fact, holds in the entire neighborhood where r is defined.

A standard calculation (making use of (6) and the orthogonality of the local
system) shows that the change to local variables near I' transforms the
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Laplacian and time derivative as follows:
(7a) Au=8,u + Ard,u + d,uls + d,u |Vs|?,
(7b) d,u becomes OJu+rd,u+sdu.
We now return to the justification of the matching relations (5). Suppose ¢ is

fixed; hence T is also. Near I', we write u as a function of the local coordinates
rand s: u =u(r, s; €). We equate u and U in that region:

(8) U(p, s, t; €) = u(ep, s, t; €).

Both the inner and outer representations (2) and (4) will be valid in the sense
explained above in an intermediate region . in the (€, p) plane defined by

9) $: € '6(e, N)=p=K(e, N),

provided this intermediate region is nonempty, which will be guaranteed in a
moment by our construction of it. Note that for fixed x, r and p also depend on
€; however, we are not fixing x, and so that dependence need not be
considered at this stage. Now (8) still holds except for an error term of order
O(e™*Y), if we replace U on the left by the truncation U and u on the right
by u™. A similar statement holds for the derivatives of (8) up to some order.
We make this replacement. Suppressing dependence on s and ¢, we have

(10) Ug(p) + - - - + €¥Un(p) = uglep) + - - - + €"un(ep) + O(e"™) in 4.

Now since the u; were assumed to be smooth up to I', we can expand them
in finite Taylor series in r around r =0, and thereby get an expansion (for
p >0) such as

uo(r, s, t) = uo(€p, s, £) =up(0+, s, t) + €(p3,ue(0+, s, t) + uy (0+, s, H)+---.

There results

N N

(11) > €"U,(p, s, t)= D, €Pu(p,s, t) + € 'Ry + o(e™),
n=0 n=0
where
(12) P.(p, s t)El - u™(ep, s, t;€) |-
n\Fs 2y n! 86" 3Dy by €=0»

and Ry = (similar expression, with n =N +1 and evaluated at some & rather
than € =0). (For p >0, the expression on the right means the limit, as € 10,
of the derivative indicated. This is also true for p <0.)

It is clear from (12) that for p >0, P, is a polynomial in p of degree n
with coefficients depending (linearly) on the u,(0+,s,t), d,u(0+, s,1),
3, ur(0+, s, t), etc. A similar statement holds when p <0. Therefore, the
functions P, in general will be discontinuous at p =0, and be polynomials on
either side. To make this clear, on occasion we may write them as P (p, s, ¢).
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Moreover, |Ry| = O(p™*"), so that

N N
(13) > € Unlp, s, 1)= ZO €"P.(p, 5, 1) + O(eV'pN ™).
n=0 n=
At this point we specify 6 and K to be of the form
(14) =€ K=¢€¢% B>1-q,

« and B being positive constants depending on N to be given below.

We will give the rest of the argument for the specific case N =2; the
extension to larger values of N will be immediate. Let #, denote the line
€ = p~ 7 in the (€, p) plane, where v is chosen so that #, € #, in fact, so that

1
(15) 1—a<;<ﬁ.

Because of the strict inequalities, for y' — y small enough, ¢, € ¥ as well.

On #,, (13) for N =2 takes the form
(16) Uo—Po)+p (Ui — P) + p2"(Uy— P)=O(€’p’) on 4,.
Let the three terms on the left be denoted by V;, Vi, and V,. We may then
write (16) in the form
W+ Vi+ V.
(17a) 0—6—3;3—2 is bounded on ¥,.
Also let y' =y + n for n >0 sufficiently small so #,- € #. Then the analogous
relation is

Vot p~ Vi +p 2,

(17v) . p€3p3;)_3{: 2 is bounded on %,.
In (17b) we may omit the factor p " in the denominator without changing the
limit relation. We do this and subtract (17b) from (17a) to obtain

(1—p "Vi(p) + (1 = p~>")Vy(p)
ep’

is bounded on %,.

As p— », the powers of p indicated on the left approach zero, so we obtain as
a consequence
(18) Vi+V,=0(e’p’) on $, asp—x,
and from (17a),
(19) Vo=0(€’p?) on $, asp—>oo.
Since the left side of (19) in fact does not depend on €, we obtain

(20) Us(p)—= Py as p—>=.
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Now multiply (18) by p” = €' to obtain
(U= P)+p "(U,— P)=0(e’p’) on g, asp—>.

Repeating the above argument, we get

(21) U,— P,=0(e*p’) on g, asp—>=
Proceeding one more step, we get
(22) U,— P,=0(ep’) on $, asp—>.

It follows that if 0< B <31, then from (14) and (15) we have €p>—0 on %,
and from (20), (21), (22),

(23) U.(p, s, )= Pi(p,s, 1) +o(l) (p— ),

for n=0, 1, and 2. (The superscript + is inserted because clearly the same
argument holds for p <0.)
The same result holds for any N if we merely choose

1

0<B< NTl
And of course a must satisfy (15); this completes the specification of é and K,
and completes the assumptions under which we are operating.

In particular, it follows that the large p behavior of U" must be that of a
polynomial in p of degree n — 1. The relations (5) give the specific results on
this large p behavior for n=0, 1, and 2. They were obtained by calculating
P,, P,, and P, explicitly.

2. Example: Bistable fronts in an inhomogeneous medium.

Consider the single equation
(24) €du=€*Au+f(u, x),

where f is of “bistable type” in u for each x. This means that for each x, the
equation f(u, x) =0 can be solved for exactly three values of u as functions
h(x), and the condition f,(h(x), x) <0 is satisfied at the two extremal functions
(see Fig. 1.1). The maximal and minimal such functions are denoted by k., (x)

FiG. 1.1
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and h_(x), respectively. For convenience, we suppose that
(25) h_(x)<0<h. (x).

Note that in (24) the presence of the coefficient € of the time derivative is of
no consequence. Time can be scaled so that any desired coefficient appears
there; we choose € for convenience. This is not true with the coefficient €2 of
the Laplacian; in fact, rescaling x also changes the function f. That coefficient
simply means that the ratio of the characteristic space scale of the solution in
regions where diffusion is important to the characteristic scale of the function
f’s spatial variation is small, of order €. In other words, relative to the spatial
scale associated with diffusion, the function f varies slowly.

The theory of such bistable equations is very well developed in the case
when f does not depend on x (then, of course, space, as well as time, may be
rescaled to make all €’s disappear) and space is one-dimensional. We will
make good use of those results. So let us fix x =x,, and consider the
corresponding equation

(26) atw = axxw +f(¢: xO)'

It is known (see [Ka], [AW75], [AW78], [FM], [Fi79¢], for example) that this
equation has a globally stable traveling wave solution y(x — 0t) satisfying
Y(£®) = hy(xo) for exactly one value of ©. We will write it as y(x — ¥, x,) to
indicate its dependence on x,. Moreover, the solution ¥ is unique, modulo
shifts in the independent variable. Let us denote the velocity by the function

(27) v = V(xo).

This function is also known to be smooth if f is smooth [FH].

Now let us return to the original problem (24), with x in R% The outer
functions u, are obtained by substituting the formal series (2) into (24) and
equating the coefficients of the various powers of €. This ensures that the
residual error in (24) produced by using the series truncated to order N is
formally of order €*', which is the highest order possible.

The lowest order outer problem in this case is :

(3

(28) f(uo, ) =0. (o
i ! e L

As the solution of (28), we choose ¥ W R

(29) ugx)=h_(x), x€eP_; ug(x)=h,(x), xeIRK. p

The solution of the inner problem will smooth out the discontinuity on I
Recall that in §1, the curve I' was not defined precisely. To remedy this
imprecision in the present case, we define it to be the location where the inner
function U equals 0. Thus

(30) U@, s, t)=0

to all orders.
For the inner problems we represent the time and space derivatives in (24)
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according to (7). Points on the moving interface I'(f) may be specified by
coordinates (s, t); we denote them by the function X(s,¢). Points in a
neighborhood of T, therefore, can be denoted by X(s, t) + re,, where e,(s, t)
denotes the unit vector normal to I" at X(s, ¢) in the direction of increasing r.
We perform this transformation in (24) to obtain the following inner equation:
rd,U + €3,U + €5,0,U = 3,,U + f(U, X(s, t) + €pe,) + €Ar3,U

31
(1) + €%(8,,U |Vs|* + 3,UAs).

Again, the inner functions U, are obtained by substituting (4) into (31) and
equating coefficients of the different powers of €. To lowest order, we have
(recalling vy = —9,ry)

(32) appU0+ v() apUO +f(U0, X) =O,
and the matching condition (5a) together with (29) requires
(33) Uo(£, s, t) = ho(X(s, t)).

(This and (25) show that (30) may always be arranged.) Here and in (32), of
course, X = X(s, t) is any point on the interface. Now note that (32) is exactly
the traveling wave equation for (26) with x, replaced by X, and in view of the
uniqueness mentioned above, we must have

(34) vo=V(X(s, 1)),
(35) Uo(P, s, t) = U’(P, X(S, t)),

where 9 now denotes the solution of (26) with the independent variable
shifted so that i vanishes at p = 0.

These facts suffice to obtain, to lowest order, the motion of I', because at
each instant of time (34) gives the normal velocity of I' at any point X on TI.
We therefore have the function 7y(x, ¢) and hence s¢(x, t). Along with that, we
of course have the dominant order inner layer solution and the outer solution
on both sides of T.

We now proceed to the next order to obtain u,, U;, and v,. For u; we have

fuuo, x)uy = 3,us=0,
SO
(36) uy(x)=0.
For U, we have, from (31), the problem
(37)
app Ul + UOap Ul +fu(U0(p: S, t)) X)Ul = (—vl - K(S. f))a,)W(Pr X)
+ 3/W(p’ X(S’ t)) + a.SoaxW(P» X(S, t))
- pvxf(UO(p! X), X) €,
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where in the last term, V,.f - e, = 0, f represents the directional derivative of f
with respect to x in the direction of e,.

The right side of (37) can be simplified, as we now show.

In (35), U, is given in terms of the function y(x — v, x,), defined following
(26), with the argument x — vt replaced by p and x, by X(s, f). Since y is
defined for any spatial point x, occurring as the second argument, we may
write

UO(p’ S, t) =y(p, x) |x=X(s,t)'

More generally, consider any smooth function F(p, x, ¢), in which the three
arguments are considered to be independent. We examine the effect of the
differential operator

D=3+ (3s)3,

acting on the function F(p, X(s, t), t), where as before X(s, t) is the point on I’
described by the arclength coordinate s at time ¢, and 9 represents
differentiation with s held constant. By the chain rule, we have

(38) DF(p, X(s, t), t) = 3:F + V. F(p, X(s, 1), 1) - [3,X(s, 1) + (3,5)8,X(s, 1)],
where 9; represents differentiation with respect to the third argument of F.
We temporarily denote the dependence of s on x and ¢ by the function
s = S(x, t). Thus in particular
s=S(X(s, 1), 1),
and the variables s and ¢ are independent in this relation, so we may
differentiate with respect to ¢ to obtain

(39) 0=V,5(X, 1) - 3,X + 3,S(X, t).

Also note by elementary differential geometry that the vectors V,§ and 3,X
are (identical) unit vectors tangent to I'; call that vector 7. We therefore have

from (39)
- 3,X(s, t)+ 9,59, X(s, t) =3, X — (V.S - 3,X)0, X
(40) =90,X— (T -3,X)T =P3,X,

the symbol P denoting projection onto the vector e,. From (38), (40), and the
fact that the norm of the vector P3,X is equal to the normal velocity v, we
obtain

(41) DF = 3;F + V,F - P3,X = 3,F + v3,F.
We now apply (41) to (37) to obtain
3pp Ui + 03, U; + f.(Un(p, s, t), X)U,
= (—v; = k(s, ))3,9(p, X) + vod,Y (P, X)x=x(s.0) = PO, f (Uo(p, X), X).
We write the left side of (42) in the form £U,, where £ is the linear

(42)
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differential operator indicated. It is easily checked that
Zp =0,

where p(p, X)=3,y(p, X). Thus p is an eigenfunction of & in Ly(—, ).
We know that the eigenvalues of ¥ are simple (see below). Let p* be the
eigenfunction corresponding to eigenvalue 0 of the adjoint operator £*. Then
any equation £q = f(p), f € L,, is solvable in L, if and only if f'is orthogonal
to p*. Equation (42) is of that form, with g =U,. We therefore require
orthogonality to p*(p):

(43) (=v,—=K)A(s, 1)+ B(s, t) =0,

where

A= fp(p)p*(p) dp,

B= [ p*(0)ved, ¥~ 3.1 |x do.

The simplicity of the eigenvalue ensures that A #0, so that (43) may be
written

(44) v1(X) = —k(X) + g(X),

for every X e I'(¢), where g(X(s, t)) = B(s, t)/A(s, t), and k is the curvature of
I’y at the point X.

Combining (34) and (44), we obtain a more accurate expression for the
normal velocity of I in the form

(45) Vo(X) + €vy(X) = V(X) — ex(X) + €g(X).

Here, of course, V and g are functions of X that can be determined a priori,
but x depends on I itself and is determined as part of the solution. The right
side of (45) shows two correction terms to the usual velocity V of a planar front
in a homogeneous medium. The first results from the possible curvature of the
front, and the second from the inhomogeneous nature of the medium.

It should be noted that this asymptotic result, to lowest order, in the case of
one space dimension has recently been rigorously justified by Fife and Hsiao
[FH]. The initial formation of the layer was also studied in that paper.

An interesting recent study of the dynamics of interfaces for gradient
systems in a homogeneous medium was made by Rubenstein, Sternberg, and
Keller [RSK]. They treated systems of the form (24) but with f replaced by the
gradient V, (1) without x dependence.

We return to show that 0 is a simple eigenvalue of £. If g is another
eigenvector with that eigenvalue, then the Wronskian W =pq’ — gp’ satisfies

W'+ vW' =0.
But W—0 at +», so W =0; hence p and q are linearly dependent.



