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Foreword

The present book aims to give a fairly comprehensive account of the
fundamentals of differential manifolds and differential geometry. The size
of the book influenced where to stop, and there would be enough material
for a second volume (this is not a threat).

At the most basic level, the book gives an introduction to the basic
concepts which are used in differential topology, differential geometry, and
differential equations. In differential topology, one studies for instance
homotopy classes of maps and the possibility of finding suitable differen-
tiable maps in them (immersions, embeddings, isomorphisms, etc.). One
may also use differentiable structures on topological manifolds to deter-
mine the topological structure of the manifold (for example, & la Smale
[Sm 67]). In differential geometry, one puts an additional structure on the
differentiable manifold (a vector field, a spray, a 2-form, a Riemannian
metric, ad lib.) and studies properties connected especially with these
objects. Formally, one may say that one studies properties invariant under
the group of differentiable automorphisms which preserve the additional
structure. In differential equations, one studies vector fields and their in-
tegral curves, singular points, stable and unstable manifolds, etc. A certain
number of concepts are essential for all three, and are so basic and elementary
that it is worthwhile to collect them together so that more advanced expositions
can be given without having to start from the very beginnings.

Those interested in a brief introduction could run through Chapters 11,
111, IV, V, VII, and most of Part IIl on volume forms, Stokes’ theorem,
and integration. They may also assume all manifolds finite dimensional.

Charts and local coordinates. A chart on a manifold is classically a
representation of an open set of the manifold in some euclidean space.

v
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Using a chart does not necessarily imply using coordinates. Charts will be
used systematically. It will be observed equally systematically that finite
dimensionality is hereby not used.

It is possible to lay down at no extra cost the foundations (and much
more beyond) for manifolds modeled on Banach or Hilbert spaces rather
than finite dimensional spaces. In fact, it turns out that the exposition
gains considerably from the systematic elimination of the indiscriminate
use of local coordinates xi,...,x, and dx;,...,dx,. These are replaced by
what they stand for, namely isomorphisms of open subsets of the manifold
on open subsets of Banach spaces (local charts), and a local analysis of the
situation which is more powerful and equally easy to use formally. In most
cases, the finite dimensional proof extends at once to an invariant infinite
dimensional proof. Furthermore, in studying differential forms, one needs to
know only the definition of multilinear continuous maps. An abuse of mul-
tilinear algebra in standard treatises arises from an unnecessary double du-
alization and an abusive use of the tensor product.

I don’t propose, of course, to do away with local coordinates. They
are useful for computations, and are also especially useful when integrating
differential forms, because the dx; A --- A dx,. corresponds to the
dx| ---dx, of Lebesgue measure, in oriented charts. Thus we often give
the local coordinate formulation for such applications. Much of the
literature is still covered by local coordinates, and I therefore hope that the
neophyte will thus be helped in getting acquainted with the literature. I
also hope to convince the expert that nothing is lost, and much is gained,
by expressing one’s geometric thoughts without hiding them under an ir-
relevant formalism.

I am aware of a widespread apprehensive reaction the moment some
geometers or students see the words “Banach space” or “Hilbert mani-
fold”. As a possible palliative, [ suggest reading the material assuming
from the start that Banach space means finite dimensional space over the
reals, and Hilbert manifold or Riemannian manifold means a finite di-
mensional manifold with a metric, with the local constant model being
ordinary euclidean space. These assumptions will not make any proof
shorter.

One major function of finding proofs valid in the infinite dimensional
case is to provide proofs which are especially natural and simple in the
finite dimensional case. Even for those who want to deal only with finite
dimensional manifolds, I urge them to consider the proofs given in this
book. In many cases, proofs based on coordinate free local representations
in charts are clearer than proofs which are replete with the claws of a
rather unpleasant prying insect such as I'j’k, Indeed, the bilinear map
associated with a spray (which is the quadratic map corresponding to a
symmetric connection) satisfies quite a nice local formalism in charts. [
think the local representation of the curvature tensor as in Proposition 1.2
of Chapter IX shows the efficiency of this formalism and its superiority over
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local coordinates. Readers may also find it instructive to compare the proof
of Proposition 2.6 of Chapter IX concerning the rate of growth of Jacobi
fields with more classical ones involving coordinates as in [He 78], pp. 71-73.

Applications in Infinite Dimension

It is profitable to deal with infinite dimensional manifolds, modeled on a
Banach space in general, a self-dual Banach space for pseudo Riemannian
geometry, and a Hilbert space for Riemannian geometry. In the standard
pseudo Riemannian and Riemannian theory, readers will note that the
differential theory works in these infinite dimensional cases, with the Hopf-
Rinow theorem as the single exception, but not the Cartan—Hadamard
theorem and its corollaries. Only when one comes to dealing with volumes and
integration does finite dimensionality play a major role. Even if via the
physicists with their Feynman integration one eventually develops a coherent
analogous theory in the infinite dimensional case, there will still be something
.special about the finite dimensional case.

The failure of Hopf-Rinow in the infinite dimensional case is due to a
phenomenon of positive curvature. The validity of Cartan—-Hadamard in the
case of negative curvature is a very significant fact, and it is only recently
being realized as providing a setting for major applications. It is a general
phenomenon that spaces parametrizing certain structures are actually infinite
dimensional Cartan-Hadamard spaces, in many contexts, e.g. Teichmuller
spaces, spaces of Riemannian metrics, spaces of Kahler metrics, spaces of
connections, spaces associated with certain partial differential equa-
tions, ad lib. Cf. for instance the application to the KdV equation in
[ScTZ 96], and the comments at the end of Chapter X1, §3 concerning
other applications.

Actually, the use of infinite dimensional manifolds in connection with
Teichmuller spaces dates back some time, because as shown by Bers, these
spaces can be embedded as submanifolds of a complex Banach space. Cf.
[Ga 87], [Vi 73]. Viewing these as Cartan—-Hadamard manifolds comes
from newer insights.

For further comments on some recent aspects of the use of infinite
dimension, including references to Klingenberg’s book [K1 83/95], see the
introduction to Chapter XIIL

Of course, there are other older applications of the infinite dimensional
case. Some of them are to the calculus of variations and to physics, for
instance as in Abraham—Marsden [AbM 78). It may also happen that one does
not need formally the infinite dimensional setting, but that it is useful to keep in
mind to motivate the methods and approach taken in various directions. For
instance, by the device of using curves, one can reduce what is a priori an
infinite dimensional question to ordinary calculus in finite dimensional space,
as in the standard variation formulas given in Chapter XI, §1.
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Similarly, the proper domain for the geodesic part of Morse theory is
the loop space (or the space of certain paths), viewed as an infinite di-
mensional manifold, but a substantial part of the theory can be developed
without formally introducing this manifold. The reduction to the finite
dimensional case is of course a very interesting aspect of the situation,
from which one can deduce deep results concerning the finite dimensional
manifold itself, but it stops short of a complete analysis of the loop space.
(Cf. Boot [Bo 60], Milnor [Mi 63].) See also the papers of Palais [Pa 63]
and Smale [Sm 64].

In addition, given two finite dimensional manifolds X, Y it is fruitful to
give the set of differentiable maps from X to Y an infinite dimensional
manifold structure, as was started by Eells [Ee 58], [Ee 59}, |Ee 61},
[EeS 64}, and [Ee 66]. By so doing, one transcends the purely formal
translation of finite dimensional results getting essentially new ones, which
would in turn affect the finite dimensional case. For other connections
with differential geometry, see [El 67|.

Foundations for the geometry of manifolds of mappings are given in
Abraham’s notes of Smale’s lectures [Ab 60] and Palais’s monograph
[Pa 68].

For more recent applications to critical point theory and submanifold
geometry, see [PaT 88].

In the direction of differential equations, the extension of the stable and
unstable manifold theorem to the Banach case, already mentioned as a
possibility in earlier versions of Differential Manifolds, was proved quite
elegantly by Irwin [Ir 70), following the idea of Pugh and Robbin for dealing
with local flows using the implicit mapping theorem in Banach spaces. I have
included the Pugh—Robbin proof, but refer to Irwin’s paper for the stable
manifold theorem which belongs at the very beginning of the theory of
ordinary differential equations. The Pugh—Robbin proof can also be adjusted
to hold for vector fields of class H? (Sobolev spaces), of importance in partial
differential equations, as shown by Ebin and Marsden [EbM 70].

It is a standard remark that the C*-functions on an open subset of a
euclidean space do not form a Banach space. They form a Fréchet space
(denumerably many norms instead of one). On the other hand, the implicit
function theorem and the local existence theorem for differential equations are
not true in the more general case. In order to recover similar results, a much
more sophisticated theory is needed, which is only beginning to be developed.
(Cf. Nash’s paper on Riemannian metrics [Na 56], and subsequent con-
tributions of Schwartz [Sc 60} and Moser [Mo 61].) In particular, some ad-
ditional structure must be added (smoothing operators). Cf. also my Bourbaki
seminar talk on the subject[La 61]. This goes beyond the scope of this book, and
presents an active topic for research.

On the other hand, for some applications, one may complete the C®-
space under a suitable Hilbert space norm, deal with the resulting Hilbert
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manifold, and then use an appropriate regularity theorem to show that
solutions of the equation under study actually are C*,

I have emphasized differential aspects of differential manifolds rather
than topological ones. 1 am especially interested in laying down basic
material which may lead to various types of applications which have arisen since
the sixties, vastly expanding the perspective on differential geometry and
analysis. For instance, I expect the books [BGV 92] and [Gi 95] to be only
the first of many to present the accumulated vision from the seventies and
eighties, after the work of Atiyah, Bismut, Bott, Gilkey, McKean, Patodi,
Singer, and many others.

Negative Curvature

Most texts emphasize positive curvature at the expense of negative cur-
vature. I have tried to redress this imbalance. In algebraic geometry, it is
well recognized that negative curvature amounts more or less to ‘“‘general
type”. For instance, curves of genus 0 are special, curves of genus 1 are
semispecial, and curves of genus =2 are of general type. Thus I have
devoted an entire chapter to the fundamental example of a space of
negative curvature. Actually, 1 prefer to work with the Riemann tensor. 1
use “‘curvature” simply as a code word which is easily recognizable by people in
the field. Furthermore, I include a complete account of the equivalence between
seminegative curvature, the metric increasing property of the exponential map,
and the Bruhat-Tits semiparallelogram law. Third, I emphasize the Cartan-
Hadamard further by giving a version for the normal bundle of a totally
geodesic submanifold. I am indebted to Wu for valuable mathematical and
historical comments on this topic.

There are several current directions whereby spaces of negative cur-
vature are the fundamental building blocks of some theories. They are
quotients of Cartan-Hadamard spaces. I myself got interested in dif-
ferential geometry because of the joint work with Jorgenson, which
naturally led us to such spaces for the construction and theory of certain
zeta functions. Quite generally, we were led to consider spaces which admit
a stratification such that each stratum is a quotient of a Cartan—Hadamard
space (especially a symmetric space) by a discrete group. That such
stratifications exist very widely is a fact not generally taken into account.
For instance, it is a theorem of Griffiths that given an algebraic variety
over the complex numbers, there exists a proper Zariski closed subset
whose complement is a quotient of a complex bounded domain, so in this
way, every algebraic variety admits a stratification as above, even with
constant negative curvature. Thurston’s approach to 3-manifolds could be
viewed from our perspective also. The general problem then arises how
zeta functions, spectral invariants, homotopy and homology invariants, ad
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lib. behave with respect to stratifications, whether additively or otherwise.
In the Jorgenson-Lang program, we associate a zeta function to each
stratum, and the zeta functions of lower strata are the principal fudge
factors in the functional equation of the zeta function associated to the
main stratum. The spectral expansion of the heat kernel amounts to a
theta relation, and we get the zeta function by taking the Gauss transform
of the theta relation.

From a quite different perspective, certain natural “moduli” spaces for
structures on finite dimensional manifolds have a very strong tendency
to be Cartan-Hadamard spaces, for instance the space of Riemannian
metrics, spaces of Kahler metrics, spaces of connections, etc. which deserve
to be incorporated in a general theory.

In any case, I find the exclusive historical emphasis at the foundational
level on positive curvature, spheres, projective spaces, grassmanians, at the
expense of quotients of Cartan-Hadamard spaces, to be misleading as to
the way manifolds are built up. Time will tell, but I don’t think we’ll have
to wait very long before a radical change of view point becomes prevalent.

New Haven, 1998 SERGE LANG
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