communicating
and mobile
systems: the

-calculus

Robin Milner

TN/ G2 7 &
’ f\[/’ 5/ _—
M g? 0N’

- 7 R
JhU'7 30

e

Communicating and Mobile Systems:
the m-Calculus

ROBIN MILNER
Computer Laboratory, University of Cambridge

{f N "
&’ o
& 1 X

E9960730

UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

(© Cambridge University Press 1999

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1999
Printed in the United Kingdom at the University Press, Cambridge
Typeset in Times 10/13pt, in IKIEX 2¢ [EPC]
A catalogue record of this book is available from the British Library
Library of Congress Cataloguing in Publication data

Milner, R. (Robin). 1934—
Communicating and mobile systems : the 7-calculus / Robin Milner.
p. cm.
ISBN 0 521 64320 1 (hc.). —ISBN 0 521 65869 1 (pbk.).
1. Mobile computing. 2. Telecommunication systems.
3. Pi-calculus. 1. Title.
QA76.59.M55 1999
004.6'2-dc21 98-39479 CIP

ISBN 0 521 64320 1 hardback
ISBN 0 521 65869 1 paperback

Communicating and Mobile Systems: the 7-Calculus

Communication is a fundamental and integral part of computing, whether
between different computers on a network, or between components within a
single computer. In this book Robin Milner introduces a new way of model-
ling communication that reflects its position. He treats computers and their
programs as themselves built from communicating parts, rather than adding
communication as an extra level of activity. Everything is introduced by means
of examples, such as mobile phones, job schedulers, vending machines, data
structures, and the objects of object-oriented programming. But the aim of the
book is to develop a theory, the 7-calculus, in which these things can be treated
rigorously.

The m-calculus differs from other models of communicating behaviour
mainly in its treatment of mobility. The movement of a piece of data inside
a computer program is treated exactly the same as the transfer of a message
— or indeed an entire computer program — across the internet. One can also
describe networks which reconfigure themselves.

The calculus is very simple but powerful. Its most prominent notion is that
of a name, and it has two important ingredients: the concept of behavioural
(or observational) equivalence, and the use of a new theory of types to classify
patterns of interactive behaviour. The internet, and its communication proto-
cols, fall within the scope of the theory just as much as computer programs,
data structures, algorithms and programming languages.

This book is the first textbook of the subject; it has been long-awaited by
professionals and will be welcomed by them, and their students.

Glossary

BASIC CONSTRUCTIONS

A(d) “p, process definition
Yo;. P summation
Alay,...,ap) process instance
{E/E}P substitution
P|Q composition
newa P restriction
PQ linking
EQUIVALENCES

2

Q

structural congruence
strong equivalence
weak equivalence

m-CALCULUS CONSTRUCTIONS

z(y) , TW)
Zﬂ'i.Pi

P

() , T
F: G

(@).P
new Z (y).P
FacC
ZO[Z'AZ'

action prefix (monadic)
summation

replication

action prefix (polyadic)
sequential composition
abstraction

concretion

application

summation of agents

3.4
3.4
34
3.4
4.3
4.3
4.4

4.4
3.3
6.2

9.1
9.1
9.1
9.4
9.6
12.1
12.1
12.1
12.1

ix

Preface

Over the last thirty years or so, computer science has seriously taken up the
challenge to understand the behaviour of communicating systems in the same
way as it understands the behaviour of computer programs.

There is little pre-existing theory which can help. This is perhaps surprising,
because the theory of computing has developed over a very long period as a
part of mathematics and logic, and indeed it influenced the design of early
stored-program computers. By comparison, a theory of communication as a
smooth extension of programming is in its adolescence.

But theories usually arise to explain practice. Recently there has been a
sea-change in computing practice; due to techological advances interactive
systems are becoming the norm rather than the exception, and our whole view
of computing has changed correspondingly. The new technology has created
the need to expand our theory of sequential algorithmic processes to systems
where interaction plays a significant and even dominant role.

One of the most challenging developments, both technically and concep-
tually, is the advent of mobile computing. People, computers and software
now continually move among each other; moreover, some of the movement is
physical and some (e.g. the movement of links) is virtual. As we experience
this, we must somehow distil basic ideas which will help us to create reliable
mobile systems which do what we want them to do.

Analysing the behaviour of mobile systems at the design stage is much
harder than it ever was for sequential computer programs. This is partly be-
cause we lack ways even to express such behaviour accurately, in order to
specify what must be designed. The m-calculus was developed in the late
1980s with just this goal in mind; this book introduces it with motivation and
examples, but also with mathematical precision.

Who should read the book The book has grown out of a lecture course
of sixteen lectures to final-year undergraduate students at Cambridge. It is

X

Preface xi

designed for such a course. In making the book from the lecture notes I have
resisted adding more material; I have only added explanations. The material
is challenging for undergraduates; the book can also be used as a basis for
graduate courses.

How to read the book The book divides clearly into two parts. Part I deals
with interactive systems which are not mobile, and represents a self-contained
review of previous work on CCS (a Calculus of Communicating Systems) [9,
10]. Part II introduces mobility, in the form of the dynamic creation of new
links between active processes. But one need not read all of Part I before Part
I1. The diagram below shows the dependency of chapters.

PART 1 PART II

Introduction
Behaviour of Automata

Sequential Processes and
Bisimulation

Reaction What is Mobility?

Transitions and Strong

\ 8
Equivalence l The 7-calculus and Reaction
Observation Equivalence: I
Theory 10 Applications of the m-calculus
Observation Equivalence: I
Examples \\1 |1 Sorts, Objects and Functions

1
|
2
|
3
|
Concurrent Processes and 4
|
5
|
6
|
7

12 Commitments and Strong
| Equivalence

13 Observation Equivalence and
l Examples

14 Related Work

There are many paths through some or all of the chapters:

— Part I, by itself is a good introduction to the algebraic treatment of
communicating systems; it emphasizes the kind of theoretical problem
which arises with concurrency, but preserves a balance between theory
and examples.

xii Preface

— Chapters 1-4 and 8-11 make a good introduction to mobile interactive
systems, with emphasis on applications and less upon the behavioural
theory. The examples of Chapter 7 can be added to this diet; they
can be appreciated to a reasonable extent without the preparation of
Chapters 5 and 6.

— Chapters 1-5 and 8—12 make a coherent whole, dealing with everything
except the concept of observation equivalence. Chapters 6, 7 and 13
can then be tackled together.

Thus the mixture of theory and examples can be varied to taste. The theo-
rems are important, but very often the practical applications can be appreciated
without them.

Acknowledgements I would first like to thank the students who have
helped me over the last three years to write down these ideas in progressively
better form, and particularly those who suffered the earlier attempts. It is a
continual source of excitement to me that to teach a new subject is so impor-
tant for one’s understanding of it. The ideas in the 7-calculus are due in great
part to Mogens Nielsen and Uffe Engberg who took important steps towards
it, to Joachim Parrow and David Walker who first worked the calculus out
in detail with me, and to Davide Sangiorgi who made important subsequent
advances. Alexis Donnelly, Peter Sewell and David Walker have read earlier
drafts of the book in considerable detail and made valuable suggestions.

Contents

Glossary
Preface

2.1
2.2
23
24
25
2.6

3.1
32
33
34
35
3.6
3.7
3.8

4.1
42
43
4.4

Part I: Communicating Systems
Introduction

Behaviour of Automata

Automata

Regular sets

The language of an automaton
Determinism versus nondeterminism
Black boxes, or reactive systems
Summary

Sequential Processes and Bisimulation

Labelled transition systems
Strong simulation

Strong bisimulation
Sequential process expressions
Boolean buffer

Scheduler

Counter

Summary

Concurrent Processes and Reaction
Labels and flowgraphs

Observations and reactions
Concurrent process expressions
Structural congruence

page viii
X

0 o W

10

12
13
15

16
16
17
18
20
22
23
24
25

26
26
27
29
31

vi Contents

4.5 Reaction rules 33
4.6 Summary 37
5 Transitions and Strong Equivalence 38
5.1 Labelled transitions 38
5.2 Strong bisimilarity and applications 45
5.3 Algebraic properties of strong equivalence 48
5.4 Congruence 50
5.5 Summary 51
6 Observation Equivalence: Theory 52
6.1 Observations 52
6.2 Weak bisimulation 53
6.3 Unique solution of equations 58
6.4 Summary 59
7 Observation Equivalence: Examples 60
7.1 Lottery 60
7.2 Job Shop 61
7.3 Scheduler 64
7.4 Buffer 67
7.5 Stack and Counter 69
7.6 Discussion 73

Part II: The 7-Calculus 75
8 What is Mobility? 77
8.1 Limited mobility 79
8.2 Mobile phones 80
8.3 Other examples of mobility 83
8.4 Summary 86
9 The 7-Calculus and Reaction 87
9.1 Names, actions and processes 87
9.2 Structural congruence and reaction 89
9.3 Mobility 91
9.4 The polyadic m-calculus 93
9.5 Recursive definitions 94
9.6 Abstractions 96
9.7 Summary 97
10 Applications of the 7-Calculus 98
10.1 Simple systems 98
10.2 Unique handling 100

10.3 Data revisited 103

Contents

10.4 Programming with lists
10.5 Persistent and mutable data

11 Sorts, Objects, and Functions

11.1 A hierarchy of channel types?

11.2 Sorts and sortings

11.3 Extending the sort language

11.4 Object-oriented programming

11.5 Processes and abstractions as messages
11.6 Functional computing as name-passing

12 Commitments and Strong Bisimulation
12.1 Abstractions and concretions

12.2 Commitment rules

12.3 Strong bisimulation, strong equivalence
12.4 Congruence

12.5 Basic congruence properties of replication
12.6 Replicated resources

12.7 Summary

13 Observation Equivalence and Examples
13.1 Experiments

13.2 Weak bisimulation and congruence

13.3 Unique solution of equations

13.4 List programming

13.5 Imperative programming

13.6 Elastic buffer

13.7 Reduction in the A-calculus

14 Discussion and related work

References
Index

vii

106
109

113
113
114
116
119
123
125

129
129
132
134
136
138
140
141

142
142
143
145
146
147
148
151

153

157
159

Glossary

The important notations, with the section number of their first appearance.

ENTITY SET ENTITY DESCRIPTION
N a,...,x,... names 3.1
N a,...,T,... co-names 3.1
L A labels 3.1
Q p,q, ... states 31
R,S,... simulation, bisimulation 3.2
psed PqQ,... sequential processes 34
Act a, B, ... actions 42
T silent action 4.2
P PQ,... concurrent processes 4.3
C process contexts 4.4
PT PQ,... m-calculus processes 9.1
™ action prefixes 9.1
PN o sorts 11.2
r C sort constructors 11.3
F.G,... abstractions 12.1
C; D s concretions 12.1
A7 AB,... w-calculus agents 12.1
ACTION RELATIONS
i labelled transition 3.1
2 commitment 12.2
— reaction 4.5
= empty experiment 6.1
= experiment 6.1

viii

Part I

Communicating Systems

1

Introduction

This book introduces a calculus for analysing properties of concurrent com-
municating processes, which may grow and shrink and move about.

Building communicating systems is not a well-established science, or even
a stable craft; we do not have an agreed repertoire of constructions for building
and expressing interactive systems, in the way that we (more-or-less) have for
building sequential computer programs.

But nowadays most computing involves interaction — and therefore involves
systems with components which are concurrently active. Computer science
must therefore rise to the challenge of defining an underlying model, with a
small number of basic concepts, in terms of which interactional behaviour can
be rigorously described.

The same thing was done for computational behaviour a long time ago; logi-
cians came up with Turing machines, register machines (on which imperative
programming languages are built) and the lambda calculus (on which the no-
tion of parametric procedure is founded). None of these models is concerned
with interaction, as we would normally understand the term. Their basic ac-
tivity consists of reading or writing on a storage medium (tape or registers),
or invoking a procedure with actual parameters. Instead, we shall work with a
model whose basic action is to communicate across an interface with a hand-
shake, which means that the two participants synchronize this action.

Let us think about some simple examples of processes which do this hand-
shaking. They can be physical or virtual, hardware or software. As a very
physical system, consider a vending machine e.g. for selling drinks. It has
links with its environment: the slot for money, the drink-selection buttons, the
button for getting your change, the delivery point for a drink. The machine’s
pattern of interaction at these links is not entirely trivial — as we shall see in
Chapter 2.

Physical systems tend to have permanent physical links; they have fixed

3

4 1 Introduction

structure. But most systems in the informatic world are not physical; their
links may be virtual or symbolic. An obvious modern example is the linkage
among agents on the internet or worldwide web. When you click on a sym-
bolic link on your screen, you induce a handshake between a local process
(your screen agent) and a remote process. These symbolic links can also be
created or destroyed on the fly, by you and others. Virtual links can also con-
sist of radio connection; consider the linkage between planes and the control
tower in an air-traffic control system. Systems like these, with transient links,
have mobile structure. In Chapter 8 we shall look at a very simple example
involving mobile telephones.

We do not normally think of vending machines or mobile phones as doing
computation, but they share the notion of interaction with modern distributed
computing systems. This common notion underlies a theory of a huge range of
modern informatic systems, whether computational or not. This is the theory
we shall develop.

This book is not about design; for example, it will not teach you how best to
design a concurrent operating system. Instead, we shall try to isolate concepts
which allow designers to think clearly, not only when analysing interactive
systems but even when expressing their designs in the first place. So we shall
proceed with the help of examples — not large systems, but small ones illus-
trating key notions and problems.

A central question we shall try to answer is: when do two interactive sys-
tems have equivalent behaviour, in the sense that we can unplug one and plug
in the other — in any environment — and not tell the difference? This is a the-
oretical question, but vitally important in practice. Until we know what con-
stitutes similarity or difference of behaviour, we cannot claim to know what
‘behaviour’ means — and if that is the case then we have no precise way of
explaining what our systems do!

Therefore our theory will focus on equivalence of behaviour. In fact we use
this notion as a means of specifying how a designed system should behave;
the designed system is held to be correct if its actual behaviour is equivalent to
the specified behaviour. Chapters 7 and 13 contain several examples of how
to prove such behavioural equivalence.

We shall begin at a familiar place, the classical theory of automata. We shall
then extend these automata to allow them to run concurrently and to interact —
which they will do by synchronizing their transitions from one state to another.
This allows us to consider each system component, whether elementary or
containing subcomponents, as an automaton.

For such systems of interacting automata we shall find it useful to represent
their interconnection by diagrams, such as the following:

1 Introduction 5

(D) (©)
(D
@A@

Here, an arc between two component automata A and B of a system means
that they may interact — that is, A and B may sometimes synchronize their
state transitions.

In many systems this linkage, or spatial structure, remains fixed as the sys-
tem’s behaviour unfolds. But in certain applications the spatial structure may
evolve; for example the component D may die (1—2):

2)

3)

This mode of evolution covers a large variety of behaviour. For example, in un-
derstanding a high-level programming language one can treat each activation
of a recursive procedure as an system component, whose lifetime lasts from
a call of the procedure to a return from it; this extends smoothly to the case
in which concurrent activations of the same procedure are allowed. Again, a
communication handler may under certain conditions create a ‘subagent’ to
deal with certain transactions; the subagent will carry out certain delegated
interactions, and die when its task is done.

A calculus called CCS (Calculus of Communicating Systems) was devel-

