PEARSON
e—

Addison
Wesley

&, 101N PdttLln tn C#

&

C# iZ it

5“/ El] Hﬁ

[5%] Steven John Metsker 2

N ELEE 23 N2 HIEITERK
v OREHER C# REMT LKL

BFRITSIERH FiXEREEE
:ES 35

[TizfER UML, REEEM UML £
VE:

=== @ TR A4 A 14
L= 23 ES www.infopower.com.cn

Al

esign Patterns in C#

Higitiast
= ED i

Y247

Design Patterns in C# (ISBN 0-321-12697-1)

Steven John Metsker

Copyright © 2004 Pearson Education,Inc..

Original English Language Edition Published by Addison-Wesley.

All rights reserved.

" Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA
ELECTRIC POWER PRESS, Copyright © 2006.

AP EIR H Pearson Education A E B HHRAAEREEN GEH. BITEH4T
BERMEBHMXERIN MEHR. RIT.
KEHBE BEIFAT, A8 LUEA TR HRPRABHTRES .

A HHTHENGH Pearson Education B IHRE, TAREENBEE,
IERTEBURERERZCS BT 01-2006-3391 5

EHERSARE (CIP) g

C#R V155K =Design Patterns in C#/ (£) FHft (Metsker,S.J.) . —REAE,
—Jbxt: PEEH BRI, 2006

ISBN 7-5083-4295-X

ILC.. IL%. MIL.CHEF-EFRIT—XX IVTP312

o B R A< B 578 CIP #dE % F (2006) % 061619 5

B 4 CHUGHESR (BEIRD
% #E: (%) Steven John Metsker
RiEmtE: 4
HRRIT: PEBENHERE
Hibk: EERHT=EFE6T BEBIZRAS: 100044

fi%: (010) 88515918 % H. (010) 88518169
B Rl CEEEEBRAR
FAERSF: 185%X233 Bl k. 2975

¥ 5: ISBN 7-5083-4295-X

B K. 200657 AdtEFE 1R 2006 & 7 A% 1 KENR
FE 4. 49.00 7T

BTE BELR

To Emma-Kate and Sarah-Jane,
Two cherubim aswirl
To Alison, the nurturing heart
To heartstring-strumming girls.

Interface Patterns

ADAPTER (page 19) Provide the interface that a client expects, using the ser-
vices of a class with a different interface.

FACADE (page 35) Provide an interface that makes a subsystem easy to use.

COMPOSITE (page 49) Allow clients to treat individual objects and composi-
tions of objects uniformly.

BRIDGE (page 65) Decouple an abstraction (a class that relies on abstract oper-
ations) from the implementation of its abstract operations so that the abstrac-
tion and its implementation can vary independently.

Responsibility Patterns

SINGLETON (page 83) Ensure that a class has only one instance, and provide a
global point of access to it.

OBSERVER (page 89) Define a one-to-many dependency among objects so that

when one object changes state, all of its dependents are notified and updated
automatically.

MEDIATOR (page 109) Define an object that encapsulates the way a set of
objects interact. This keeps the objects from referring to each other explicitly
and lets you vary their interaction independently.

PROXY (page 123) Provide a placeholder for another object to control access to
it.

CHAIN OF RESPONSIBILITY (page 139) Avoid coupling the sender of a request to
its receiver by giving more than one object a chance to handle the request.

FLYWEIGHT (page 147) Use sharing to support large numbers of fine-grained
objects efficiently.

Construction Patterns

BUILDER (page 163) Move the construction logic for an object outside the class
to instantiate.

FACTORY METHOD (page 171) Define the interface for creating an object while
retaining control of which class to instantiate.

ABSTRACT FACTORY (page 179) Provide for the creation of a family of related
or dependent objects.

PROTOTYPE (page 191) Provide new objects by copying an example.

MEMENTO (page 197) Provide for the storage and restoration of an object’s
state. ‘

Operation Patterns

TEMPLATE METHOD (page 223) Implement an algorithm in a method, defer-
ring the definition of some steps of the algorithm so that other classes can
supply them.

STATE (page 235) Distribute state-specific logic across classes that represents
an object’s state.

STRATEGY (page 247) Encapsulate alternative strategies (or approaches) in
separate classes that each implement a common operation.

COMMAND (page 257) Encapsulate a request as an object so that you can
parameterize clients with different requests; you can queue, time, or log
requests; and you can allow a client to prepare a special context in which to
invoke the request.

INTERPRETER (page 267) Let developers compose executable objects according
to a set of composition rules.

Extension Patterns

DECORATOR (page 291) Let developers compose an object’s behavior dynami-
cally.

ITERATOR (page 311) Provide a way to access the elements of a collection
sequentially.

VISITOR (page 329) Let developers define a new operation for a hierarchy
without changing the hierarchy’s classes.

Back Matter

APPENDIX A: DIRECTIONS (page 343)
APPENDIX B: SOLUTIONS (page 347)
APPENDIX C: OOZINOZ SOURCE (page 417)
APPENDIX D: UML AT A GLANCE (page 451)
Glossary (page 431)

Bibliography (page 439)

Index (page 441)

PREFACE

It seems a long time ago (two years!) that I received the initial encourage-
ment for this book from Paul Becker, an editor at the time with Addison-
Wesley. I remain grateful to Paul for his help, and to his successor, John
Neidhart, who took over as editor when Paul left. I am also grateful for
the encouragement of John Vlissides, who is the Patterns Series editor
and who has been a supporter of mine for all three of my books.

John Vlissides is also, of course, one of the four authors of Design Patterns.
John and his co-authors—Erich Gamma, Ralph Johnson, and Richard
Helm—produced the work that not only established a list of important
patterns that every developer should know, but also set a standard for
quality and clarity that I have aspired to attain in my own writing.

In addition to relying heavily on Design Patterns, I have benefited from
the use of many other books; see Bibliography on 439. In particular, I have
depended on The Unified Modeling Language User Guide [Booch] for its
clear explanations of UML. For concise and accurate help on C# topics, I
have consulted C# Essentials [Albahari] almost daily. I have also repeat-
edly drawn on the insights of C# and the .NET Platform [Troelsen], and for
realistic fireworks examples, I have consistently consulted The Chemistry
of Fireworks [Russell].

As the present book began to take shape, several excellent reviewers
helped to guide its progress. I would like to thank Bill Wake for his early
reviews. Bill never ceases to amaze me in his ability to catch the subtlest
errors while simultaneously providing advice on overall direction, con-
tent, and style. I would also like to thank Steve Berczuk and Neil Harri-
son. In particular, they hit on the same key point that the book needed
more introductory material for each pattern. Their comments drove me to
rework the entire book. It is much stronger now because of their advice.

With the help of editors and reviewers, I was able to write this book; but, the
text of a book is just the beginning. I would like to thank Nick Radhuber and
the entire production staff for their hard work and dedication. Their work
renders text into what is to this day its most usable form—a book!

Steve Metsker (Steve.Metsker@acm.org)

xvi

Contents

Preface xvii
Chapter 1: Introduction 1
Why Patterns? 1
Why Design Patterns? 2
Why C#? 3
UML 3
Challenges 4
The Organization of this Book 4
Welcome to Oozinoz! 6
Summary 6
Part 1: Interface Patterns

Chapter 2: Introducing interfaces 9
Interfaces and Abstract Classes 9
Interfaces and Delegates 10
Interfaces and Properties 14
Interface Details 15
Summary 16
Beyond Ordinary Interfaces 17
Chapter 3: Adapter 19
Adapting to an Interface 19
Class and Object Adapters 24
Adapting Data in .NET 28
Summary 33

ix

X Contents

Chapter 4: Facade

An Ordinary Facade

Refactoring to Facade

Facades, Utilities, and Demos

Summary

Chapter 5: Composite

An Ordinary Composite

Recursive Behavior in Composites
Composites, Trees, and Cycles

Composites with Cycles

Consequences of Cycles

Summary

Chapter 6: Bridge

An Ordinary Abstraction

From Abstraction to Bridge

Drivers as Bridges

Database Drivers

Summary

Part 2: Responsibility Patterns

Chapter 7: Introducing Responsibility

Ordinary Responsibility

Controlling Responsibility with Accessibility

Summary

Beyond Ordinary Responsibility

Chapter 8: Singleton

Singleton Mechanics

Singletons and Threads

Recognizing Singleton

Summary

35
35
38
46
48

49
49
50
53
58
62
63

65
65
68
70
71
71

75
75
77
80
81

83
83
84
86
87

Chapter 9: Observer

C# Support for Observer

89

Delegate Mechanics

90

A Classic Example—Observer in GUIs
Model/View /Controller

94

Layering

Summary

Chapter 10: Mediator

A Classic Example—GUI Mediators

Relational Integrity Mediators

Summary

Chapter 11: Proxy

A Simple Proxy

A Data Proxy

Remote Proxies

Summary

Chapter 12: Chain of Responsibility
An Ordinary Chain of Responsibility

Refactoring to Chain of Responsibility
Anchoring a Chain

Chain of Responsibility without Composite

Summary

Chapter 13: Flyweight

Immutability

Extracting the Immutable Part of a Flyweight

Sharing Flyweights

Summary

101
103
108

109
109
114
121

123
123
127
132
137

139
139
141
144
146
146

147
147
148
150
153

Contents

xi

Xii Contents

Part 3: Construction Patterns

Chapter 14: Introducing Construction

A Few Construction Challenges

Summary

Beyond Ordinary Construction

Chapter 15: Builder

An Ordinary Builder

Building under Constraints

A Forgiving Builder

Summary

- Chapter 16: Factory Method

A Classic Example—Enumerators

Recognizing Factory Method

Taking Control of Which Class to Instantiate

Factory Method in Parallel Hierarchies

Summary

Chapter 17: Abstract Factory

A Classic Example—GUI Kits

Abstract Factories and Factory Method

Namespaces and Abstract Factories

Summary

Chapter 18: Prototype

Prototypes as Factories

Prototyping with Clones

Summary

Chapter 19: Memento

A Classic Example—Using Memento for Undo

Memento Durability

157
157
160
160

163
163
166
168
169

mn
171
173
174
176
178

179
179
185
189
190

191
191
193
196

197
197
206

Persisting Mementos across Sessions 206
Summary 209
Part 4: Operation Patterns

Chapter 20: Introducing Operations 213
Operations and Methods 213
Signatures 215
Delegates 216
Exceptions 217
Algorithms and Polymorphism 218
Summary 220
Beyond Ordinary Operations 221
Chapter 21: Template Method 223
A Classic Example—Sorting 223
Completing an Algorithm 226
Template Method Hooks 229
Refactoring to Template Method 230
Summary 232
Chapter 22: State 235
Modeling States 235
Refactoring to State 239
Making States Constant 244
Summary 246
Chapter 23: Strategy 247
Modeling Strategies 247
Refactoring to Strategy 250
Comparing Strategy and State 255
Comparing Strategy and Template Method 256
Summary 256

Contents

xiii

Xiv Contents

Chapter 24: Command

A Classic Example—Menu Commands
Using Command to Supply a Service

Command Hooks

Command in Relation to Other Patterns
Summary

Chapter 25: Interpreter

An Interpreter Example

Interpreters, Languages, and Parsers

Summary

Part 5: Extension Patterns

Chapter 26: Introducing Extensions

Principles of OO Design

The Liskov Substitution Principle

The Law of Demeter

Removing Code Smelis

Beyond Ordinary Extensions

Summary

Chapter 27: Decorator

A Classic Example—Streams

Function Wrappers

Decorator in GUIs

Decorator in Relation to Other Patterns
Summary

Chapter 28: lterator

Ordinary Iteration

Thread-Safe Iteration

Iterating over a Composite

Summary

257
257
259
261
263
264

267
267
279
280

283
283
284
285
286
287
289

291 -
291
300
308
309
309

311
311
311
316
327

Chapter 29: Visitor

Visitor Mechanics

329
329

An Ordinary Visitor

331

Visitor Cycles

337

Visitor Controversy

341

Summary

342

Appendix A: Directions

Get the Most Out of This Book

343
343

Understand the Classics _

Weave Patterns into Your Code

Keep Learning

345

Appendix B: Solutions

Appendix C: Oozinoz Source

Acquiring and Using the Source

347

417
417

Building the Oozinoz Code

417

Helping the Oozinoz Code Find Files
Testing the Code with NUnit

418

419

Finding Files Yourself

419

Summary

420

Appendix D: UML at a Glance

Classes

421
422

Class Relationships

Interfaces

424
425

Delegates and Events

427

Objects

States

428
429

Glossary

Bibliography

Index

431

439

441

Contents

XV

CHAPTER 1

INTRODUCTION

This book is for developers who know C# and want to improve their
skills as designers. This book covers the same list of techniques as the
classic book Design Patterns, written by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides. This book (Design Patterns in C#) pro-
vides examples in C# and in a .NET setting. This book also includes many
“challenges,” exercises designed to help strengthen your ability to apply
design patterns in your own C# programs. ‘

Why Patterns?

A pattern is a way of doing something, a way of pursuing an intent, a
technique. The idea of capturing effective techniques applies to many
endeavors: making food, making fireworks, making software, and to
other crafts. In any new craft that is starting to mature, the people work-
ing on it will begin to find common, effective methods for achieving aims
and solving problems in various contexts. The community of people that
practice a craft usually invent jargon that helps them talk about their
craft. Some of this jargon will refer to patterns, established techniques for
achieving certain aims. As a craft and its jargon grows, writers begin to
play an important role. Writers document a craft’s patterns, helping to
standardize the jargon and publicize effective techniques.

Christopher Alexander was one of the first writers to encapsulate a craft’s
best practices by documenting its patterns. His work relates to architec-
ture—of buildings, not software. In A Pattern Language: Towns, Buildings,
Construction, Alexander provides patterns for architecting successful
buildings and towns. His writing is powerful and has influenced the soft-
ware community, partially because of the way he looks at intent.

You might state the intent of architectural patterns as something like “to
design buildings.” But Alexander makes it clear that the intent of archi-
tectural patterns is to serve and inspire the people who will occupy build-
ings and towns. Alexander’s work showed that patterns are an excellent

1

Chapter 1 * Introduction

way to capture and convey the wisdom of a craft. He also established that
properly perceiving and documenting the intent of a craft is a critical,
philosophical, and elusive challenge.

The software community has resonated with the patterns approach and
has created many books that document patterns of software develop-
ment. These books record best practices for software process, software
analysis, high-level architecture, and class-level design, and new patterns
books appear every year. If you are choosing a book to read about pat-
terns, you should spend some time reading reviews of available books
and try to select the book that will help you the most.

Why Design Patterns?

A design pattern is a pattern—a way to pursue an intent—that uses classes
and their methods in an object-oriented (OO) language. Developers often
start thinking about design after learning a programming language and
writing code for a while. You might notice that someone else’s code seems
simpler and works better than yours does and you might wonder how
that developer achieves such simplicity. Design patterns are a level up
from code and typically show how to achieve a goal using a few classes.
Other people have discovered how to program effectively in OO lan-
guages. If you want to become a powerful C# programmer, then you
should study design patterns, especially those in this book—the same
patterns that Design Patterns explains.

Design Patterns describes 23 design patterns. Many other books on design
patterns have followed, so that there are at least 100 design patterns
worth knowing. The 23 design patterns that Gamma, Helm, Johnson, and
Vlissides placed in Design Patterns are probably not absolutely the most
useful 23 design patterns to know. On the other hand, these patterns are
probably among the 100 most useful patterns. Unfortunately, there is no
set of criteria that establishes the value of a pattern, and so the identity of
the other 77 patterns in the top 100 is not yet established. Fortunately, the
authors of Design Patterns chose well, and the patterns they documented
are certainly worth learning. Learning these patterns will also serve as a

foundation as you branch out and begin learning patterns from other
sources.

Why C#? 3

GoF
You may have noted the potential confusion between “design patterns” the topic and Design
Patterns the book. The topic and the book title sound alike, so to distinguish them, many speakers
and some writers refer to the book as the “Gang of Four” book, or the “GoF” book, referring to
the number of its authors. In print, it is not so confusing that Design Patterns refers to the book
and “design patterns” refers to the topic. Accordingly, this book avoids using the term “GoF.”

Why C#?

This book gives its examples in C#, the OO language at the center of
Microsoft’s .NET framework. The .NET framework is a suite of products
for developing and managing systems with tiered, OO architectures.

The .NET framework is important simply because of Microsoft’s size.
Also, .NET aligns at a high level with industry thinking about how to
compose an architecture. You can compare most .NET components with
competing products from vendors that implement software according to
the Java™ 2 Platform, Enterprise Edition (J2EE) specification. But note
that J2EE is a specification, not a product, while .NET is the product
lineup of one company and its partners.

At a superficial level, C# is important because it is the central OO lan-
guage for developing in .NET. C# is also important because, like Java, it is
a consolidation language, designed to absorb the strengths of earlier lan-
guages. This consolidation has fueled the popularity of Java and C# and
helps ensure that future languages will evolve from these languages
rather than depart radically from them. Your investment in C# will almost
surely yield value in any language that supplants C#.

The patterns in Design Patterns apply to C# because, like Smalltalk, C++,
and Java, C# follows a class/instance paradigm. C# is much more similar
to Smalltalk and C++ than it is to, say, Prolog or Self. Although competing
paradigms are important, the class/instance paradigm appears to be the
most practical next step in applied computing. This book uses C# because
of the popularity of C# and .NET, and because C# appears to lie along the -
evolutionary path of languages that we will use for decades ahead.

UML

Where this book’s challenges (exercises) have solutions in code, this book
uses C#. Many of the challenges ask you to draw a diagram of how
classes, packages, and other elements relate. You can use any notation

