Programming
Parallel
- Processors

Programming
arallel
Processors

EDITED BY Robert G. Babb Il

Oregon Graduate Center

W

ADDISON-WESLEY PUBLISHING COMPANY, INC.

. Rooding. Massachuseits « Menlo Park, California « New York
Den Mills, Ontario « Wokingham, England « Amsterdam « Bonn « Svdney
Singapore « Tokvo * Madrid « Bogotd = Santiago » San Juan

‘I'his booK 1S In the Addison-wesiey denes in Lomputer dcience.

Library of Congress Cataloging-in-Publication Data

Proaramming Parallel Processors.

Includes index.

1. Parallel programming (Computer science) I. Babb,
Robert G. .
QA76.6.P75168 1988 .004’.35 87-18833
ISBN 0-201-11721-5

Alliant, Concentrix, FX/8, and FX/Fortran are trademarks of Alliant Computer Systems Corpora-
tion.
Sequent®, Balance®, DYNIX®, pdbx®, and SBSOOO@ are rtegistered trademarks of Sequent
Computer Systems Incorporated.
Butterfly, Chrysalis, and Uniform System are trademarks of Bolt Beranek and Ncwman Inc.
CRAY-1® is a registered trademark of Cray Research Incorporated.
CRAY X-MP is a product of Cray Research Incorporated.
Ethernet is a trademark of Xerox Corporation.
Floating Point Systems is a leading supplier.of supercomputers, Jmini supercomputers, and array
Processors. '
FLObus and Loral Dataflo are trademarks of Loral Instrumentation.
The term Loral LDF 100 is used with permission of Loral Instrumentation, 8401 Aero
Drive, San Diego, CA 92123.
GENIX is a trademark of National Semiconductor Corporation.
iLBX and iPSC are trademarks of Intel Corporation.
Occam is a trademark of the Inmos Group of Companies.
MULTIBUS® is a registered trademark of Intel Corporation.
SUN Workstation® is a registered trademark of SUN Microsystems.
UNIX is a trademark of AT&T Bell Laboratories.
VAX, VMS, and MicroVAX are trademarks of Digital Equipment Corporation.
XENIX is a trademark of Microsoft Corporation.

Diagrams in this book were prepared by David C. DiNucci using gremlin and ditroff under
Berkeley UNIX 4.3BSD on an Imagen 8/300 Laser Printer at Oregon Graduate Center,
Beaverton, OR.

The text was typeset by ETP Services, Portland, Oregon, in Times Roman and Courier on a
Linotronic 100 from troff source prepared by the editor.

Copyright © 1988 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying. recording, or
otherwise, without the prior permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

ABCDEFGHIJ-DO-8987

Preface

This book reports practical experiences with programming commercially available
scientific parallel processors. The intended audience is programmers, managers, and
students in computer science and other disciplines with an interest in understanding the
state of the art in software tools for programming the current generation of parallel pro-
cessors. This record of our adventures should also prove of interest to the large number
of software engineering researchers and system builders working actively today to
develop better parallel programming languages and environments for the next genera-
tion of parallel processing computer systems.

This book developed from class projects in a graduate software engineering seminar
that I taught at the Oregon Graduate Center in Spring 1986. Most of the students in the
seminar had little or no experience with real parallel programming, although a few of
the students had run parallel programs on the Department of Computer Science and
Engineering’s 32-node Intel iPSC Hypercube.

Although parallel computers are becoming increasingly avallable to the program-
ming community today, the fraction of people (whether in industry or academia) who
have actually run a parallel program is still small. Our experiences are probably
representative of what any programmer might experience when first confronted with the
brave new world of parallel programming. Some details reported in the chapters on
programming the various machines are actually composites of some of the more
interesting things that occurred during the course of our programming experiments,
although they are written as if they all happened to the chapter author.

Since, by one recent count, there are currently over thirty companies worldwide that
are building various flavors of parallel computers, we have been able to include only a
small subset of machines in this compilation. The choice of machmes was, determined
by the following criteria:

1. The machines had to be commercially available, rather than one-of-a-kind
research testbeds.

2. The machines had to be accessible by the class. Generally, this meant that we
needed either remote access via dial-up phone lines or travel support to gain

Preface

physical access to remote machines. Several machines (BBN Butterfly, Loral
LDF-100, IBM 3090, and FPS T Series) were added to the list by class members
after the class ended.

3. We wanted to include a wide range of machines, from supermini class (Sequent
and Intel) to minisupercomputers (Allianty to parallel vector supercomputers
(CRAY, IBM).

4. We wanted experience with a variety of architectures and programming models,
including both shared memory (Alliant, CRAY, IBM, and Sequent) and
message-passing machines (BBN Butterfly, Intel iPSC, FPS T series, and Loral).

Since several of the machines that we worked on during the writing of this book were -
still quite new, the half-life for some of the implementation details discussed is quite
short. In fact, it has been difficult for us to keep chapters up to date during the nine
month period over which this book was written! However, some of the parallel pro-
gramming environments have been fairly stable, and many of our more general observa-
tions about the nature of parallel programming should prove less perishable.

This book is not intended as a handbook on parallel computer architecture, although
parallel architectural aspécts are included for each machine where necessary to provxde
a basis for discussing various parallel programming issues.

In addition to the people who provided technical help with specific chapters the
editor would like to acknowledge the following people who read and commented on
earlier drafts of the entire manuscript: Dan Hammerstrom, James Hardy, Ian Kaplan,
Alan Karp, Richard Kieburtz, Kim Korner, and Alaine Warfield. The editor would also
like to thank the reviewers of this work: Jack Dongarra, Argonne National Laboratory;
Robert Hiromoto, Los Alamos National Laboratory; Harry Jordan, . University. of
Colorado; and David Klappholz, Stevens Institute of Technology, for their suggestions
and support for this project.

Beaverton, Oregon ' R.GB. II

" Disclaimer:

Although we include examples showing how parallel execution performance can be
measured for most of the machines, and we describe various ways in which this perfor-
mance data for our tiny Pi Program example could be interpreted, these results should
not be interpreted ‘as definitive, formal performance benchmarks. It would be a serious
misuse of our data to draw general conclusions regarding the relative performance of
the various processors based on our limited experiments with a single small parallel
program. :

Contributors

Timothy S. Axelrod, Lawrence Livermore National Laboratory

- Timothy S. Axelrod received the B.S..degree in physics from California Institute of
Technology in 1969, the M.S. degree in applied physics from Stanford University in
1971, and the Ph.D. degree in physics from the University of California, Santa Cruz, in
1980.

Currently he is Group Leader for Parallel Processing in the Computational Physics
Division of Lawrence Livermore National Laboratory. His interests include radiative
transfer and numerical modeling of ‘supemovae, as well as performance jssues in
parallel computing. ‘He has published widely in these and other areas. '

Robert G. Babb 11, Oregon Graduate Center

Robert Babb is an Associate Professor of Computer Science and Engineering at the
‘Oregon Graduate Center. He received the B.S. degree in astrophysics and mathematics
from the University of New Mexico in 1969. In 1974 he received the M.Math. degree
in computer science from the University of Waterloo, Ontario, Canada, and the Ph.D.
-degree in electrical engineering and computer science from the University of New
Mexico. .

From 1974 to 1976 he was an Assistant Professor in the Computer Science and

- Statistics Department at Califomia Polytechnic State University, San Luis Obispo..

From 1976 to 1978, he was a Visiting Assistant Professor of Computer Science at New
Mexico State University. From 1978 to 1982, he was a Software Research Engineer
with Boeing Computer Services Company, Seattle, developing methods and tools' for
large-scale software engineering. C

His current research interests center on the application of Large-Grain Data Flow
(LGDF) methods to software engineering, data-driven parallel processing, and super-
computer. system architecture. '

Dr. Babb-is a member of ACM and the IEEE Computer Society.

ix

Contributors

Michael S. Beckerman, Tektronix

Michael Beckerman received the B.S. degree in computer science from Portland
State University in 1984 and is working toward his M.S. in the Department of Com-
puter Science and Engineering at the Oregon Graduate Center.

He is a Software Design Engineer working for Tektronix, Inc., and president of
Dialectic Software Technologies, Inc., a software consulting firm.

His research interests include languages, specifications, programming environments,
code generation, and Large-Grain Data Flow.

Frederica Darema-Rogers, IBM Hawthorne Research Laboratory

Frederica Darema-Rogers received the B.S. degree in physics and mathematics
from the University of Athens, Greece, in 1969, the M.S. degree from the Illinois Insti-
tute of Technology in 1972, and the Ph.D. degree from the University of California at
Davis in 1976, both in theoretical physics.

She was a Research Associate at the University of Pittsburg and Brookhaven
National Laboratory and a Technical Staff Member at Schlumberger-Doll Research
before joining IBM Research in 1982 as a Research Staff Member.

Her research .interests are -in the areas of parallel algorithms and techniques-and
tools for the development and performance analysis of parallel applications.

David C. DiNucci, Oregon Graduate Center .

David DiNucci is a full-time graduate student in the Department of Computer Sci-
‘ence and Engineering at the Oregon Graduate Center working towards an M.S. degree
in computer science. He received the B.S. degree in computer science from Portland
State University in 1983.

He has worked as a System Programmer at Portland State University and a Data
Systems Coordinator for the Portland Public School District.

His current interests are in the fields of Large-Grain Data Flow and formal
specifications.

Stuart W. Hawkinson, Floating Point Systems

Stuart Hawkinson received his B.S. -degree in chemistry from Washington State
University in 1965 and his Ph.D. in chemical physics from the University of Chicago in
1968. He performed post-doctoral research at Chicago under an NIH fellowship and
was an NSF Post-Doctoral Investigator at Oak Ridge National Laboratory.

He is a Staff Scientist in the Product Definition' Group at Floating Point Systems,
where he has been actively involved in the development of parallel algorithms and
architectures. Previously, he was a manager of the programming staff responsible for
verification and performance enhancement of Floating Point Systems Math Libraries.

Before joining FPS, he was an Associate Professor of biochemistry and biophysics
at the University of Tennessee, Knoxville, for ten years. ‘He also held a Guest Scientist
position at Oak Ridge National Laboratory in the Chemistry Division.

His current professional interests include numerical mathematics, parallel pro-
cessing algorithms, and scientific computing applications.

Contributors

Richard K. Helm, Floating Point Systems

Kent Helm is a graduate of Evergreen State College, Olympia, Washington, where
he received his Bachelor's degree in computer science in 1982.

He is employed by Floating Point Systems as a Software Design Engineer special-
izing in parallel operating systems implementation.

Allan R. Larrabee, Boeing Computer Services

Allan Larrabee received a B.S. degree in biology and chemistry in 1957 from
Bucknell University, Lewisburg, Pennsylvania. He received the Ph.D. degree in
biochemistry with a minor in organic chemistry in 1962 from the Massachusetts Institute
of Technology.

After two years in the Medical Service Corps, US Army, he did post-doctoral work
at the National Institutes of Health, Bethesda, Maryland. In 1966 he became an Assis-
tant Professor of Chemistry at the University of Oregon and in 1972 became an Asso-
ciate Professor at Memphis State University, Memphis, Tennessee. He became a Full
Professor at Memphis State in 1978.

He completed an M.S. degree in 1986 in the Department of Computer Science and
Engineering at the Oregon Graduate Center. His thesis research was on adaptation of a
large-scale computational chemistry program to the Intel iPSC Concurrent Computer.
He is currently a Paralle]l Application Specialist for Boeing Computer Services, Bel-
levue, Washington.

James R. McGraw, Lawrence Livermore National Laboratory

Jim McGraw received the B.S. degree in computer science from Purdue University
in 1972 and the Ph.D. degree in computer science from Cornell University in 1977. His
thesis topic was "Language Features for Process Interaction and Access Control".

Dr. McGraw then became an Assistant Professor at the University of California,
Davis, and a researcher for Lawrence Livermore National Laboratory (LLNL). During
this time he became heavily involved in the design and use of applicative languages for
multiprocessors. He is one of the principal designers of the SISAL language, which is
now being implemented on a variety of multiprocessors by different research groups.
Currently, he works for LLNL in the Computation Department. His administrative
assignment is to organize, evaluate, and promote research projects in computer science
for the laboratory.

His current research activitiés focus on the problem of writing highly parallel pro-
grams for multi-processor computers and automatically partitioning them for high
system utilization.

Phillip C. Miller, Floanng Point Systems :

Phil Miller is a graduate of Purdue Umversny where he received hxs B.S.EE.E. in
1978. He is currently pursuing an M.S. degree in computer science and engineering at
the Oregon Graduate Center.

He is employed by Floating Point Systems as a Senior Software Engineer special-
izing in compiler design.

xi

xii

Contributors

Kurt B. Modahl, Oregon Graduate Center

Kurt Modahl is a part-time student pursuing an M.S. degree in computer science
and engineering at the Oregon Graduate Center. He received his B.S. in natural science
from the University of North Dakota in 1971.

He was a Research Associate at the Oregon Regional Primate Research Center from
1972 to 1982. From 1983 to 1984 he served as a Computer Consultant for Infotec
Development, Inc.

His research interests are in parallel processing, program visualization, and object-
oriented programming languages.

V. Alan Norton, IBM Yorktown Research Laboratory

Alan Norton received the B.A. degree from the University of Utah in 1968 and the
Ph.D. degree from Princeton University in 1976, both in mathematics.

He was an Instructor at the University of Utah from 1976 to 1979 and an Assistant
Professor at Hamilton College from 1979 to 1980. Currently he is a Research Staff
Member at IBM, Yorktown Heights, New York, managing the parallel applications and

.architecture group of the Research Parallel Processing Project (RP3).

His research interests include the performance analysis and architecture of parallel
computer systems, parallel algorithms, fractals, and computer graphics.

Douglas M. Pase, Oregon Graduate Center
* Doug Pase received a B.S. degree in computer science and mathematics from

Northern Arizona University, Flagstaff, Arizona. He is currently a full-time graduate
student in the Department of Computer Science and Engineering at the Oregon Gra-
duate Center.

He has designed and assisted in the design of compilers and parallel languages at
Floating Point Systems-and the Oregon Graduate Center.

His current .research interests are in parallel language design, compilers, and
advanced (parallel) computer architectures.

Keith E. Pennick, Boeing Computer Services :

Keith Pennick received the B.S. degree in computer science from Washington State
University in 1980. Currently he is a Systems Programmer for the High Speed Com-
puting Center of Boeing Computer Services.

His ‘primary interests are in parallel processing, networking, operating system
design, and knowledge-based systems.

Gregory F. Pfister, IBM Research

Gregory Pfister received the S.B., S.M., and Ph.D. degrees in electrical engineering
from MIT in 1967, 1969, and 1974, respectively. v

He joined IBM in 1974, and from 1975 to 1976 was on the faculty of the Electrical
Engineering and Computer Science Department of the University of California at
Berkeley. In the IBM Research Division, he was Manager of Software Support for the
Yorktown Simulation Engine (YSE) and is presently Principal Scientist of the RP3 pro-
ject.

Contributors

He has been elected to Eta Kappa Nu, Tau Beta Pi, and Sigma Xi, and is a senior
member of the IEEE. '

Charles E. St. John, Floating Point Systems

Chuck St. John is a graduate of Youngstown State University, Youngstown, Ohio,
where he received his B.S.E.E. in 1917. He is currently pursuing an M.S. degree in
electrical engineering from Oregon State University.

He is employed by Floating Point Systems as a Hardware Design Engineer special-
izing in the design of VLSI floating point arithmetic hardware. He is a member of
IEEE and the IEEE Computer Society. His interests include parallel and high-
performance architectures.

Stuart M. Stern, Boeing Computer Services Company

Stuart M. Stern received his B.S. degree in mathematics from Fairleigh Dickinson
University in 1963. '

He worked for The Boeing Company from 1964 to 1967, performing operating
system support. From 1967 to 1972 he worked for Informatics, Inc., on several con-
tracts, including IBM systems development, CBS News Presidential Election fore-
casting, and Air Force Intelligence graphics retrieval.)

Mr. Stern was one of the founders of CP/M Review and UNIX Review magazines.
He has been working for Boeing Computer Services since 1972, During this period, he
was one of the principal designers of the original EXCHANGE ATM message
switching system, designed a multitasking operating system for the MOSLER Corpora-
tion, and supported the Al Center’s UNIX environment. Currently, he is working as an
Al Specialist with Boeing Computer Services High Speed Computing Center.

Janice M. Stone, IBM Research

Janice Stone received the A.B. degree in mathematics from Duke University in
1962 and pursued graduate studies in mathematics at Georgetown University, and in
logic and the philosophy of science at Stanford University.

She joined IBM research in 1984, where her research interests focus dn parallel
algorithms and tools for development and analysis of parallel programs.

Lise Storc, Oregon Graduate Center

Lise Storc is a part-time graduate student in the Department of Computer Science
and Engincering at the Oregon Graduate Center working on her master’s thesis. She
received a B.S. in mathematics from the University of Texas at Austin in 1977 and
attended graduate school in mathematics at the University of North Carolina at Chapel
Hill.

She is currently employed as a Computer Scientist in the Medical Computing
Research Laboratory at Emanuel Hospital and Health Center in Portland, Oregon,
working on expert and graphics systems for a wide variety of medical applications.

Her current research interests are in parallel processing, medical expert systems,
and the graphical display of complex mathematical objects.

xiii

Contents

PLEFACE ..uvvvvevierreseciseestsesstess s s sesessssssssssessesssss s sesasasssessssssssnsensensesssses s sssssnasesessssnssnen vii
(80 1T L o) ¢ T P P ix
L. IDEOQUCHION cevovrrreeveeee oo eesesseessesesseseeeeseseessesesemeesssee e seeesmesessssessenes 1
Robert G. Babb 11
2. Exploiting Multiprocessors: Issues and OpUionsccovvvcuriniininiecisinnsenn. 7
James R. McGraw and Timothy S. Axelrod ‘
3. ATHANE FX/B .ottt et e se e s sas e s 27
David C. DiNucci
‘4. BBN Butterfly Parallel Processor......... T SSRGS R 43
Allan R. Larrabee, Keith E. Pennick, and Stuart M. Stern
5. CRAY X-MPu.iiiiiiniiitniticniicsiee s sserestessesensssesnesesessessesassessinsasssssasssss 59
Kurt B. Modahl '
6. FPS T Series Parallel Processor ...ttt cvcneeaesenns 73
. Phillip C. Miller, Charles E. St. John, and Stuart W. Hawkinson
VTe IBM 3090 oevecerreeeseesnneseesssissessesessnsssssse e sasssesse s ssesese e ssnenene 93
Michael S. Beckerman
8. iIntel iPSC CONCUITENE COMPULET mv-evrceeeveeressssssasessssssssssssssesssossssssssssssenssesene 105
Douglas M. Pase and Allan R. Larrabee
9. '

Loral Dataflo LDF 100ccccoiiiiiiiiieceesseeciretecnene s ss et eassenes 125
David C. DiNucci ; ' '

iv

Contents

10.. Sequent Balance SIS ususmsussuissssssssissussosismmesssuensessssammnssansarsosssadosavsisnsysisss 143
Lise Storc

APPENDICES

A. Alliant FX/Bccoceviriennnnns T PRI TR W o —— 155
Al. Pi Program Listing—No Explicit COnCurrency.........cccoceeevevveimneninenienieenens 157
A2. PiProgram Listing—With Explicit CONCUITENCY........c.occevummivreneiinicninneninnen 158
A3. Excerpts from the "FX/FORTRAN Programmer’s Handbook"..................... 160

B.. BBN Butierfly ;.corumsmmumsnsimmmmamnssisasissisaassaslmes osssissessiesiis 185
Bl. PiProgram LIStINEGcocovieiiireiniieieiceeteie et saasa e ersese s 188
B2. Uniform Systesn Library ROUtin®s...........ccccoeiieiiviiniininineecesiee e 190

C. . CRAY X MPusivuiinsssnsusnmmsmssssssssmsssssss s sssssss s ssasesss sooisse ssosmsasssassssesnosssss 215
Cl. PiProgram LAINE ... 217
C2. Excerpts from "MPDOC - CTSS Multiprocessor Support”..........ccoccvevereennne 220

D, FPS T SIes....ciiiiiiiciiictic ettt ee e st ettt s s e 241
D1. Pi Program Listing «cc.cicessmmnsimmisimm sseiv s sissomiaississeissivinissinmmnssnsnes 242
D2. T Series OVEIVIEW.....occriciicnisiiiiniississississsssssssstssssstssasssssnisonssassaseassassniss 246

Richard K. Helm and Phillip C. Miller)

E. IBM 3090 smssmmsessaronssssssnianisnssivinsssssissssko i s siv s 255
El. Pi Program Listing—EPEX Preprocessor Input...........ococeoviveeivinivneeennenne 257
E2. Pi Program Listing—EPEX Preprocessor Qutputo.cecereiveereenernncnnianena 25%
E3. Pi Program Timing Results........ o A S ST T A SR s R SRR SRS R 260
E4. The VM/EPEX FORTRAN Preprocessor Referenceccooveeuevvvevennncnn. 266

Janice M. Stone, Frederica Darema-Rogers,
V. Alan Norton and Gregory F. Pfister

F.o Intel iPSC .o BT A 295
F1. Unoptimized Pi Program—Host Program Listing........ccccccocveeivinricrrinnnnnen, 296
F2. Unoptimized Pi Program—Node Program Listing.......ccccceveeviecievccienernernene, 297
F3. Optimized Pi Program—Host Program Listing.........ccccccvveecevieccrecnneeennnen. 208
F4. Optimized Pi Program—Node Program Listing.......ccccooeeevivineiieeciieneceenane 299
FS. C Language and the Cube Man@gercooovveceiiieioeececeeeeeeenenn 300
F6. Excerpts from the "iPSC Concurrent Debugger Manual"ccccocu..... 303

Contents

G. Loral Dataflo LDF 100ccooiiiiiiiiniriicicicieee et sacsasseeanes 307
Gl. Pi Program LiStings: ..o ssrosmssmissssmasess s 308
G2. DGL FOIMAL ..u.ititiierieeiieieiieee ettt ssee st sbe s e sme s s e sees s s eeseenseseesneneene 310

- G3. DGL—As Output from the Tag ASSIgNeT........cccovmimeiriiininciiieienenee 311
G4. FLOREAD and FLOWRITE (FPrtran)...........cooecuveuniucinsiiminnieciciecees e 312
GS5. Floread and FIOWTIE (C)..uiiviuiiiiiiiiieciieiecitie e ciees e e s e e s s sena e e 313
G6. PRINTF (Fortran)........... T R R S O 314
G7. Makefile Listing for the Pi Program.........ccoccooviiiviniiiiiiiciiiiiccnicn, 315

H. Sequent BAlANCe SETIESvvocveeeeeeeeeeeseeee et sessters b epes s ees e 317
H1. Pi Program Listing (Before Preprocessing).......ccccoeecvunenicicerinieenecncncinnes 319

- H2. Pi Program Listing (After Preprocessing)cccooveeerevcnieniinecenieencnesneeneens 320
H3. Parallel Compilers, Utilities, and System Calls........c.ccocevveneviciicninnenecnnne. 322
H4. Compiler DIr€Ctivescococuiriiiepiiniiniieiriee ittt sre s seeese e ns 350
HS. The DYNIX Parallel Programming Library (Manual Pages)........cc.cccevuneneen. 352

1
Introduction

Robert G. Babb II

..WANTED for Hazardous Journey. Small wages, bitter cold,
long months of complete darkness, constant danger, safe return
doubtful. Honor and recognition in case of success.

— Ernest Shackleton'

Programming parallel processors is different. In 1984, when I ran my first parallel pro-
grams on the then brand-new Denelcor Heterogenous Element Processor (HEP) at Los
Alamos National Laboratory, it quickly became apparent to me that parallel program-
ming led to a higher "astonishment factor" than anything I had experienced in com-
puting since my undergraduate days doing battle with PL/I.

The HEP had a very elegant and simple way of specifying synchronization opera-
tions in Fortran by reference to special dollar-sign variables (e.g., $I). The dollar-sign
variables were shared via ordinary Fortran COMMON? blocks between subroutines that
could execute in parallel. Each dollar-sign variable had, in addition to its ordinary For-
tran value (real or integer), a special bit that indicated whether the variable was empty
or full. Attempting to assign a value to a full variable would cause a process to suspend
until another process emptied the variable by reading a value from it. Similarly, a pro-
cess that attempted to access the value of an empty variable (usually on the right side of
an assignment statement) would be suspended automatically by efficient hardware

'From a newspaper advertisement for an Antarctic Expedition.

*Throughout this book, including the reprinted material in the Appendices, we have used
this font only for program text and machine values, and for characters typed on terminals. Words
like subroutine (that are used by programmers as if they were normal English words) are gen-
erally not put in the special font unless they refer to a particular line of code containing the word
SUBROUTINE. On the other hand, Fortran program elements such as COMMON, IF, and DO
are usually set in this special font because their meaning in programs differs from their English
meanings.

Introduction

mechanisms, to come back to life after another process had written a value into the vari-
able, with the side effect of filling it. To get more than one Fortran subroutine running,
the CREATE statement, a parallel version of the ordinary Fortran CALL, allowed start
up of separate, parallel threads of execution.

These two seemingly innocuous extensions to Fortran let loose the parallel genie on
the world. One could now (in safe, old-fashioned Fortran, no less) create semaphores,
locks, processes or tasks, busy waits, barriers, critical sections, and monitors. On the
down side, programmers now had to deal with unpredictable and usually nonrepeatable
situations of deadlock, livelock, race conditions, and nondeterminism. Suddenly, even
very simple tasks, programmed by experienced programmers who were dedicated to the
idea of making parallel programming a practical reality, seemed to lead inevitably to
upsetting, unpredictable, and totally mystifying bugs. The difficulties we parallel
pioneers experienced on the HEP seemed a lot worse than could be explained by the
hardware and system software bugs that are common features with any very new com-
puter system.

Since the coming (and, sad to say, passing) of the HEP, a large number of com-
panies around the world have built a whole menagerie of commercial parallel machines.
Some of them were built as special projects by established computer companies, but
many have been built by startups that were able to convince venture capitalists that
parallel processing was an idea whose time (and money) had come.

This book attempts to capture, at least at a tutorial level, the state of the art in pro-
gramming commercially available scientific parallel computers. A number of other
parallel machines that are specialized for such tasks as pattern matching [1] and signal
processing have also appeared recently, but they are beyond the scope of this book.
The machines we have included range in power from minicomputers to supercomputers.
Their unifying feature is that they are all examples of commercially available scientific
parallel machines that support user-visible parallel programming.

1.1 A BRIEF HISTORY OF PARALLEL PROCESSING

Parallel processing is not new. Operating systems have relied upon simulated and
actual parallel operation of computers for at least twenty years. Hardware designers
have dealt with the problems and rewards of parallelism at least since the days of von
Neumann. In fact, early paper designs for what we know today as the von Neumann
machine included consideration of a variety of parallel features. These parallel designs
were rejected mainly because of the poor reliability of the components available for
building machines. The designers’ lack of experience in building any kind of com-
puting engine also argued for adoption of the simplest possible design. .

What is new is that computer manufacturers have begun to provide ways for appli-
cation designers and programmers to control and exploit multiple CPUs directly to
cooperate in solving a problem.

Some of the current confusion in the field of parallel programming is due to the
wide variety of different computing cultures that have given us the terminology in
common use among parallel programming afficionados. This also leads frequently to

1.2 Parallel Processing Terminology

situations in which one basic concept can be described with three or four different
words or phrases that have almost, but not quite, identical connotations.

An even larger discrepancy in terminology arises in the difference between shared-
memory and message-passing machines. Each type of machine can simulate the other,
but there seems to be a clear dividing line between the two camps, which of course is
reflected in two overlapping but not identical sets of terms for related concepts.

1.2 PARALLEL PROCESSING TERMINOLOGY

When a particular instance of a code is executed on a machine, all of the work needed
to execute that program is referred to as a single task or process. When a task executes
on a multiprocessor, it can divide into several (possibly many) different and indepen-
dent threads of execution. in the absence of other constraints, each of these threads of
execution can execute simultaneously on different processors.

“ Each independent thread of execution is known as a process. It is often necessary
for two or more processes to share information. For example, one process may com-
pute some values that are used by another. If these values are stored in memory that is
accessible to both processes, we describe it as being shared data. Shared data must
always be accessed carefully to ensure correct program operation. We would not want
one process writing the data while another is trying to read it.

A critical region refers to a section of code that must be executed with exclusive
access to the shared data referenced within that code. A process preparing to enter a
critical region may be delayed if any other process is currently executing inside a
similar region. Semaphores or locks are one type of programming tool that can be used
by programmers or compilers to implement critical regions. safely.

On distributed memory machines (such as the Intel Hypercube), messages are used
in much the same way that locks or semaphores are used on shared memory machines
to synchronize computations. Of course, locks and messages are not mutually
exclusive, since it is possible to conceive of hybrid machines which could make use of
both kinds of synchronization simultaneously.

One way to coordinate multiple threads of computation periodically is to create a
barrier. Several types of barriers have proven useful in scientific application program-
ming. In one type, all processes in a group must arrive at a certain point in their code
(the barrier) before any are allowed to proceed. A variant is to have a single-thread
section following the barrier that any one (but only one) of the processes executes. A
variant of this latter type of barrier is to allow only the last process to arrive to execute
the single-thread critical region.

When a process attempts to lock (acquire) a lock, the act of getting the lock must
be atomic. That is, only one of a set of processes should be capable of obtaining the
lock. Processes that fail to get the lock can choose to suspend (when another suspended
process is available to use the CPU), or can busy wait (sometimes called spinning) and
keep trying repeatedly to obtain the lock. (This last strategy is obviously unattractive if
it is possible that the lock will never be released!)

Deadlock refers to a situation in which each member of a group of processes is
waiting for another member of the group to do something (typically, to unlock or

. release a lock). Livelock is more active but no more productive. It refers to a situation

Introduction

in which each member of a group of processes is busy signaling (passing messages) to
other members of the group, but doing nothing to advance the progress of a computa-
tion.

In real life, things are sometimes very complicated. It is possible for some parts of
a parallel program to be deadlocked, some parts to be livelocked, while another running
process manages to compute the desired answer. It is even possible for sequential pro-
gram bugs to masquerade as parallel errors [2].
1.3 SOFTWARE ENGINEERING ISSUES

Parallel programming can be even more frustrating than is regular programming. In
addition to the usual software engineering problems common to all forms of program
development, an additional set of problems must be avoided, and additional criteria
must be met for a parallel program to be judged successful. Software engineering prob-
lems directly related to the introduction of parallelism include:

e Avoiding deadlock and livelock;
e Preventing unwanted race conditions;
e Avoiding the creation of too many parallel proeesses; and
e Detecting program termination (no longer a trivial matter!).
New evaluation criteria for parallel programs include:
e Program speedup versus number of processors; .
e Size of synchronization overhead;
e Effect of problem size on speedup;
e Maximum number of processors that can be kept busy; and
e Determinism of program execution.
In addition, new software design issues arise, such as:
e What size program "chunks" should be used?
e How many parallel processes should be created?
e What form of process synchronization should be adopted?
e How should access to shared data be managed?
e How can deterministic program execution be guaranteed?

e How should processing tasks be subdivided to make the most effective use of
available parallel hardware?

Debugging parallel programs is notoriously difficult. Race conditions can masquerade
as program logic errors. When deadlock occurred on the HEP, for example, the
addresses where the various parallel processes were hung (waiting for each other) could,
after some effort, be determined. However, figuring out the sequence of events that got

s -

