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Preface

This book reports practical experiences with programming commercially available
scientific parallel processors. The intended audience is programmers, managers, and
students in computer science and other disciplines with an interest in understanding the
state of the art in software tools for programming the current generation of parallel pro-
cessors. This record of our adventures should also prove of interest to the large number
of software engineering researchers and system builders working actively today to
develop better parallel programming languages and environments for the next genera-
tion of parallel processing computer systems.

This book developed from class projects in a graduate software engineering seminar
that I taught at the Oregon Graduate Center in Spring 1986. Most of the students in the
seminar had little or no experience with real parallel programming, although a few of
the students had run parallel programs on the Department of Computer Science and
Engineering’s 32-node Intel iPSC Hypercube.

Although parallel computers are becoming increasingly avallable to the program-
ming community today, the fraction of people (whether in industry or academia) who
have actually run a parallel program is still small. Our experiences are probably
representative of what any programmer might experience when first confronted with the
brave new world of parallel programming. Some details reported in the chapters on
programming the various machines are actually composites of some of the more
interesting things that occurred during the course of our programming experiments,
although they are written as if they all happened to the chapter author.

Since, by one recent count, there are currently over thirty companies worldwide that
are building various flavors of parallel computers, we have been able to include only a
small subset of machines in this compilation. The choice of machmes was, determined
by the following criteria:

1. The machines had to be commercially available, rather than one-of-a-kind
research testbeds.

2. The machines had to be accessible by the class. Generally, this meant that we
needed either remote access via dial-up phone lines or travel support to gain
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physical access to remote machines. Several machines (BBN Butterfly, Loral
LDF-100, IBM 3090, and FPS T Series) were added to the list by class members
after the class ended.

3. We wanted to include a wide range of machines, from supermini class (Sequent
and Intel) to minisupercomputers (Allianty to parallel vector supercomputers
(CRAY, IBM).

4. We wanted experience with a variety of architectures and programming models,
including both shared memory (Alliant, CRAY, IBM, and Sequent) and
message-passing machines (BBN Butterfly, Intel iPSC, FPS T series, and Loral).

Since several of the machines that we worked on during the writing of this book were -
still quite new, the half-life for some of the implementation details discussed is quite
short. In fact, it has been difficult for us to keep chapters up to date during the nine
month period over which this book was written! However, some of the parallel pro-
gramming environments have been fairly stable, and many of our more general observa-
tions about the nature of parallel programming should prove less perishable.

This book is not intended as a handbook on parallel computer architecture, although
parallel architectural aspécts are included for each machine where necessary to provxde
a basis for discussing various parallel programming issues.

In addition to the people who provided technical help with specific chapters the
editor would like to acknowledge the following people who read and commented on
earlier drafts of the entire manuscript: Dan Hammerstrom, James Hardy, Ian Kaplan,
Alan Karp, Richard Kieburtz, Kim Korner, and Alaine Warfield. The editor would also
like to thank the reviewers of this work: Jack Dongarra, Argonne National Laboratory;
Robert Hiromoto, Los Alamos National Laboratory; Harry Jordan, . University. of
Colorado; and David Klappholz, Stevens Institute of Technology, for their suggestions
and support for this project.

Beaverton, Oregon ' R.GB. II

" Disclaimer:

Although we include examples showing how parallel execution performance can be
measured for most of the machines, and we describe various ways in which this perfor-
mance data for our tiny Pi Program example could be interpreted, these results should
not be interpreted ‘as definitive, formal performance benchmarks. It would be a serious
misuse of our data to draw general conclusions regarding the relative performance of
the various processors based on our limited experiments with a single small parallel
program. :
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1
Introduction

Robert G. Babb II

..WANTED for Hazardous Journey. Small wages, bitter cold,
long months of complete darkness, constant danger, safe return
doubtful. Honor and recognition in case of success.

— Ernest Shackleton'

Programming parallel processors is different. In 1984, when I ran my first parallel pro-
grams on the then brand-new Denelcor Heterogenous Element Processor (HEP) at Los
Alamos National Laboratory, it quickly became apparent to me that parallel program-
ming led to a higher "astonishment factor" than anything I had experienced in com-
puting since my undergraduate days doing battle with PL/I.

The HEP had a very elegant and simple way of specifying synchronization opera-
tions in Fortran by reference to special dollar-sign variables (e.g., $I). The dollar-sign
variables were shared via ordinary Fortran COMMON? blocks between subroutines that
could execute in parallel. Each dollar-sign variable had, in addition to its ordinary For-
tran value (real or integer), a special bit that indicated whether the variable was empty
or full. Attempting to assign a value to a full variable would cause a process to suspend
until another process emptied the variable by reading a value from it. Similarly, a pro-
cess that attempted to access the value of an empty variable (usually on the right side of
an assignment statement) would be suspended automatically by efficient hardware

'From a newspaper advertisement for an Antarctic Expedition.

*Throughout this book, including the reprinted material in the Appendices, we have used
this font only for program text and machine values, and for characters typed on terminals. Words
like subroutine (that are used by programmers as if they were normal English words) are gen-
erally not put in the special font unless they refer to a particular line of code containing the word
SUBROUTINE. On the other hand, Fortran program elements such as COMMON, IF, and DO
are usually set in this special font because their meaning in programs differs from their English
meanings.
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mechanisms, to come back to life after another process had written a value into the vari-
able, with the side effect of filling it. To get more than one Fortran subroutine running,
the CREATE statement, a parallel version of the ordinary Fortran CALL, allowed start
up of separate, parallel threads of execution.

These two seemingly innocuous extensions to Fortran let loose the parallel genie on
the world. One could now (in safe, old-fashioned Fortran, no less) create semaphores,
locks, processes or tasks, busy waits, barriers, critical sections, and monitors. On the
down side, programmers now had to deal with unpredictable and usually nonrepeatable
situations of deadlock, livelock, race conditions, and nondeterminism. Suddenly, even
very simple tasks, programmed by experienced programmers who were dedicated to the
idea of making parallel programming a practical reality, seemed to lead inevitably to
upsetting, unpredictable, and totally mystifying bugs. The difficulties we parallel
pioneers experienced on the HEP seemed a lot worse than could be explained by the
hardware and system software bugs that are common features with any very new com-
puter system.

Since the coming (and, sad to say, passing) of the HEP, a large number of com-
panies around the world have built a whole menagerie of commercial parallel machines.
Some of them were built as special projects by established computer companies, but
many have been built by startups that were able to convince venture capitalists that
parallel processing was an idea whose time (and money) had come.

This book attempts to capture, at least at a tutorial level, the state of the art in pro-
gramming commercially available scientific parallel computers. A number of other
parallel machines that are specialized for such tasks as pattern matching [1] and signal
processing have also appeared recently, but they are beyond the scope of this book.
The machines we have included range in power from minicomputers to supercomputers.
Their unifying feature is that they are all examples of commercially available scientific
parallel machines that support user-visible parallel programming.

1.1 A BRIEF HISTORY OF PARALLEL PROCESSING

Parallel processing is not new. Operating systems have relied upon simulated and
actual parallel operation of computers for at least twenty years. Hardware designers
have dealt with the problems and rewards of parallelism at least since the days of von
Neumann. In fact, early paper designs for what we know today as the von Neumann
machine included consideration of a variety of parallel features. These parallel designs
were rejected mainly because of the poor reliability of the components available for
building machines. The designers’ lack of experience in building any kind of com-
puting engine also argued for adoption of the simplest possible design. .

What is new is that computer manufacturers have begun to provide ways for appli-
cation designers and programmers to control and exploit multiple CPUs directly to
cooperate in solving a problem.

Some of the current confusion in the field of parallel programming is due to the
wide variety of different computing cultures that have given us the terminology in
common use among parallel programming afficionados. This also leads frequently to
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situations in which one basic concept can be described with three or four different
words or phrases that have almost, but not quite, identical connotations.

An even larger discrepancy in terminology arises in the difference between shared-
memory and message-passing machines. Each type of machine can simulate the other,
but there seems to be a clear dividing line between the two camps, which of course is
reflected in two overlapping but not identical sets of terms for related concepts.

1.2 PARALLEL PROCESSING TERMINOLOGY

When a particular instance of a code is executed on a machine, all of the work needed
to execute that program is referred to as a single task or process. When a task executes
on a multiprocessor, it can divide into several (possibly many) different and indepen-
dent threads of execution. in the absence of other constraints, each of these threads of
execution can execute simultaneously on different processors.

“ Each independent thread of execution is known as a process. It is often necessary
for two or more processes to share information. For example, one process may com-
pute some values that are used by another. If these values are stored in memory that is
accessible to both processes, we describe it as being shared data. Shared data must
always be accessed carefully to ensure correct program operation. We would not want
one process writing the data while another is trying to read it.

A critical region refers to a section of code that must be executed with exclusive
access to the shared data referenced within that code. A process preparing to enter a
critical region may be delayed if any other process is currently executing inside a
similar region. Semaphores or locks are one type of programming tool that can be used
by programmers or compilers to implement critical regions. safely.

On distributed memory machines (such as the Intel Hypercube), messages are used
in much the same way that locks or semaphores are used on shared memory machines
to synchronize computations. Of course, locks and messages are not mutually
exclusive, since it is possible to conceive of hybrid machines which could make use of
both kinds of synchronization simultaneously.

One way to coordinate multiple threads of computation periodically is to create a
barrier. Several types of barriers have proven useful in scientific application program-
ming. In one type, all processes in a group must arrive at a certain point in their code
(the barrier) before any are allowed to proceed. A variant is to have a single-thread
section following the barrier that any one (but only one) of the processes executes. A
variant of this latter type of barrier is to allow only the last process to arrive to execute
the single-thread critical region.

When a process attempts to lock (acquire) a lock, the act of getting the lock must
be atomic. That is, only one of a set of processes should be capable of obtaining the
lock. Processes that fail to get the lock can choose to suspend (when another suspended
process is available to use the CPU), or can busy wait (sometimes called spinning) and
keep trying repeatedly to obtain the lock. (This last strategy is obviously unattractive if
it is possible that the lock will never be released!)

Deadlock refers to a situation in which each member of a group of processes is
waiting for another member of the group to do something (typically, to unlock or

. release a lock). Livelock is more active but no more productive. It refers to a situation
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in which each member of a group of processes is busy signaling (passing messages) to
other members of the group, but doing nothing to advance the progress of a computa-
tion.

In real life, things are sometimes very complicated. It is possible for some parts of
a parallel program to be deadlocked, some parts to be livelocked, while another running
process manages to compute the desired answer. It is even possible for sequential pro-
gram bugs to masquerade as parallel errors [2].
1.3 SOFTWARE ENGINEERING ISSUES

Parallel programming can be even more frustrating than is regular programming. In
addition to the usual software engineering problems common to all forms of program
development, an additional set of problems must be avoided, and additional criteria
must be met for a parallel program to be judged successful. Software engineering prob-
lems directly related to the introduction of parallelism include:

e Avoiding deadlock and livelock;
e Preventing unwanted race conditions;
e Avoiding the creation of too many parallel proeesses; and
e Detecting program termination (no longer a trivial matter!).
New evaluation criteria for parallel programs include:
e Program speedup versus number of processors; .
e Size of synchronization overhead;
e Effect of problem size on speedup;
e Maximum number of processors that can be kept busy; and
e Determinism of program execution.
In addition, new software design issues arise, such as:
e What size program "chunks" should be used?
e How many parallel processes should be created?
e What form of process synchronization should be adopted?
e How should access to shared data be managed?
e How can deterministic program execution be guaranteed?

e How should processing tasks be subdivided to make the most effective use of
available parallel hardware?

Debugging parallel programs is notoriously difficult. Race conditions can masquerade
as program logic errors. When deadlock occurred on the HEP, for example, the
addresses where the various parallel processes were hung (waiting for each other) could,
after some effort, be determined. However, figuring out the sequence of events that got
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