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PREFACE

This volume of mathematical tables has been prepared under the aegis of the Institute
of Mathematical Statistics. The Institute of Mathematical Statistics is a professional
society for mathematically oriented statisticians. The purpose of the Institute is to en-
courage the development, dissemination, and application of mathematical statistics. The
Committee on Mathematical Tables of the Institute of Mathematical Statistics is respon-
sible for preparing and editing this series of tables. The Institute of Mathematical
Statistics has entered into an agreement with the American Mathematical Society to
jointly publish this series of volumes. At the time of this writing, submissions for
future volumes are being solicited. No set number of volumes has been established for

this series. The editors will consider publishing as many volumes as are necessary to
disseminate meritorious material.

Potential authors should consider the following rules when submitting material.

I. The manuscript must be prepared by the author in a form acceptable for
photo-offset. This includes both the tables and introductory material. The author

should assume that nothing will be set in type although the editors reserve the right
to make editorial changes.

2. While there are no fixed upper and lower limits on the length of tables,
authors should be aware that the purpose of this series is to provide an outlet for
tables of high quality and utility which are too long to be accepted by a technical
journal but too short for separate publication in book form.

3. The author must, wherever applicable, include in his introduction the following:

(a) He should give the formula used in the calculation, and the computational
procedure (or algorithm) used to generate his tables. Generally speaking,
FORTRAN or ALGOL programs will not be included but the description of

the algorithm used should be complete enough that such programs can be
easily prepared.

(b) A recommendation for interpolation in the tables should be given. The
author should give the number of figures of accuracy which can be obtained
with linear (and higher degree) interpolation.

(c) Adequate references must be given.

(d) The author should give the accuracy of the table and his method of
rounding.
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(e) In considering possible formats for his tables, the author should attempt

to give as much information as possible in as little space as possible. Generally
speaking, critical values of a distribution convey more information than the
distribution itself, but each case must be judged on its own merits. The text
portion of the tables (including column headings, titles, etc.) must be propor-
tional to the size 5—1/4" by 8—1/4". Tables may be printed proportional to the
size 8—1/4" by 5—1/4" (i.e., turned sideways on the page) when absolutely nec-
essary; but this should be avoided and every attempt made to orient the tables
in a vertical manner.

(f) The table should adequately cover the entire function. Asymptotic results
should be given and tabulated if informative.

(8) An example or examples of the use of the tables should be included.

4. The author should submit as accurate a tabulation as he can. The table will
be checked before publication, and any excess of errors will be considered grounds
for rejection. The manuscript introduction will be subjected to refereeing and an
inadequate introduction may also lead to rejection.

5. Authors having tables they wish to submit should send two copies to:

Dr. Robert E. Odeh, Coeditor
Department of Mathematics
University of Victoria

Victoria, B. C., Canada V8W 2Y2

At the same time, a third copy should be sent to:

Dr. William J. Kennedy, Coeditor
117 Snedecor Hall

Statistical Laboratory

Iowa State University

Ames, Iowa 50011

Additional copies may be required, as needed for the editorial process. After the
editorial process is complete, a camera-ready copy must be prepared for the publisher.

Authors should check several current issues of The Institute of Mathematical Sta-
tistics Bulletin and The AMSTAT News for any up-to-date announcements about sub-
missions to this series.
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THE DISTRIBUTION OF THE SIZE OF THE MAXIMUM CLUSTER
OF POINTS ON A LINE

Norman D. Neff Trenton State College

Joseph I. Naus Rutgers University

ABSTRACT
Given N points randomly drawn from the unit line, let 55 be the size of
the largest number of points clustered within an interval of length p. Let 5£
be the size of the smallést interval that contains n out of the N points. The
distributions of Eé and 5£ are related: Pr(ﬁh < p) = Pr(ﬁé >n). We denote
the common probability P(n;N,p). Tables are given for P(n;N,p) and for the

expectation over N of P(n;N,p) where N is a Poisson random variate.

1. INTRODUCTION

Researchers in many fields deal with the clustering of events in time and
space. A quality control expert investigates clusters of defectives. A commu-
nications engineer designs system capacity to accommodate clusters. An educa-
tional psychologist sets success quotas to gauge learning. Experts in accident
prevention, reliability, traffic control, ecology, epidemiology and many other
fields focus on unusually large clusters. The probabilities of large clusters
under various models are tools of the natural, physical, and social sciences,

The present tables provide probabilities for the size of the largest
cluster of random points on the line. Given N points independently drawn from
the uniform distribution on (0,1), let 55 be the largest number of points to be
found in any subinterval of (0,1) of length p. Let P(n;N,p) denote the proba-

bility Pr(?{p > n).

Received by the editors December 1978 and in revised form June 1979.
AMS (MOS) Subject Classifications (1970): Primary 62Q05; Secondary 62E15,
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2 NEFF and NAUS

Certain applications deal with points generated from a Poisson process,
where the total number of points in the unit interval is a Poisson random vari-
ate with expectation A. Let P’(n;\,p) denote the expectation taken over N of
P(n;N,p), where N is a Poisson random variate with expectation ). Tables are
given for P(n;N,p) and P’(n;\,p). Section two describes applications of these
probabilities to a wide variety of scientific and statistical areas. Section
three summarizes known results on the probabilities and details approaches

that were used to compute the tables.

2. APPLICATIONS
This section gives a variety of applications for P(n;N,p) and for
P’(n;),p).

2.1 Applications of P(n;N,p)

(a) Developability of silver specks. The photographic signal recorded on

a film depends not only on the total number of photons during exposure, but
also on their time sequence. Hamilton, Lawton, and Trabka (1972, p. 855) note

that this dependency is called reciprocity failure, a key aspect of photo-

graphic science. They note that P(n;N,p) was studied early in photographic
history by Silberstein (1939) and others and plays a role in IOW'intensitX

reciprocity failure (a decrease in sensitivity at less than optimum intensi-

ties). A classical model for the developability of silver specks is that a
speck will develop if k or more photons are absorbed within the decay time, to’
of the nucleus.

Silberstein (19L45), Berg (1945), and Mack (1948, 1950) find the expected
number of n-aggregates, or clusters, where n points form an aggregate if "they
are all contained within a subinterval, p, of (0,1), no matter how placed in
(o,l)."l Berg (1945, p. 340) and Mack (1948, p. 784) indicate their interest
in P(n;N,p) and derive an approximate formula for it in the case of sufficient-
ly rare aggregates. Silberstein (1945, p. 319) states that

The rigorous determination of the probability P of any given number

of aggregates, n-ets, among N points is exceedingly complicated
and becomes to all purposes impracticable when N exceeds a few units.

lSilberstein (1945, p. 319).
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Silberstein makes two exceptions, namely, the probability of no aggregate,
1-P(2;N,p), and the probability of the largest possible aggregate, P(N;N,p).

(b) Clustering of leukemia cases. Childhood leukemia is a relatively

rare disease. Scientists seeking clues as to common causative agents investi-
gate unusual clusters of cases. They ask whether clusters of a given size
within a given time period are likely to occur by chance. Ederer, Myers, and
Mantel (1962, p. 9), who develop approaches to this problem, state:

In considering temporal clusters we chose the calendar year as the

unit of time, and in this way obtained 5 non-overlapping years in a

5-year period. The reader will recognize that a 5-year period in

fact contains a continuum of overlapping periods one year in length.

However, the distribution of the maximum number of cases in a year

under the null hypothesis [of randomness] cannot be readily deter-

mined unless the number of periods is restricted in some way.

Tt is natural to look at clusters where they fall, be it in a calendar year, or
in a year period that overlaps two calendar years. The above authors note that
Pinkel and Nefzeger (1959) did look at the unrestricted continuum. However, if
one does this, then one must use the appropriate null distribution in checking
for significance. For the above example, P(n;N,0.2) is the distribution of the
maximum number of cases in a year, under the null hypothesis that the N cases
are distributed at random over the five-year period, for the unrestricted con-
tinuum of l-year periods. TFor example, given N = 15 cases over the five year
period, the chance that there is any calendar year that contains as many as
seven cases is 0.07 (from Appendix - Table 1 in Ederer, Myers, and Mantel).
This is much less likely than the probability that there is a one-year period
(calendar or not) that contains at least 7 cases. From Table la of our appen-
dix, P(7;15,0.2) = 0.30.

(c) Dialing calls. Dialing is started for fifteen phone calls at times
that are distributed at random over a one-minute period. The dialing time for
a call is ten seconds. Find the probability that eight or more phone calls are
being dialed at the same time.

Feller (1958, p. 397) notes that compound events such as "seven calls

within a minute on a certain day" involve complicated sample spaces and goes on

to state,
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We cannot deal here with such complicated sample spaces and must
defer the study of the more delicate aspects of the theory.
Given 15 phone calls initiated during a minute, the event "eight or more calls
initiated during a ten-second interval" is equivalent to the event that for
some i=1,2,...,8, dialing for the (7+i)th phone call started less than ten
seconds after dialing started for the ith phone call. Interpolating in Table 1
we find the desired probability P(8;15,1/6) = 0.037.

2.2 Applications of P’(n;)\,p)

(d) Visual perception. Photons arrive at a receptor in the eye according

to a Poisson process. Under conditions of low illumination it is observed that
the retinal neurones do not discharge for each photon, but rather it is conjec-
tured that there is a triggering effect from several photons. One of the clas-
sical theories of perception is that if n or more photons arrive within an in-
tegration time t, then this triggers an impulse and the neurone discharges.
What is frequently of interest is the distribution of waiting times till dis-
charge. Leslie (1969, p. 379) states that the distribution of the waiting time
till discharge under the preceding model is intractable and gives an alterna-
tive model. Van de Grind et al. (1971) note that an analytic solution is lack-
ing and use a Monte Carlo approach to estimate the distribution under the clas-
sical model. The probability that the waiting time till first discharge is
less than or equal to T is P’(n;\,t/T), where

P’(n;\,t/T) = z§=n e_xT(xT)NP(n;N,t/T)/N!. (2.1)
Tables 2 and 2a provide values for P'(n;\,p). Outside the range of these ta-
bles we can use approximations of the form

P'(n;\,1/2L) =1 - [1 - P'(n;ex/L,&)]L‘l[l - P'(n;x/L,%)J_L+2.

The reasoning behind this approximation and its generalization for other p
values is detailed in the appendix under the discussion of the use of Tables 2
and 2a.

Van de Grind et al. (1971) use a Monte Carlo approach to chart the values
of X such that P’(k;\,t/T) = 0.60. Based on a simulation of lOLl flashes they

find P’(4;1,1/200) = 0.60 for A somewhere between 90 and 100 (given the rough-
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ness of the plot). From the above approximation and using values from Table 2
we find
P’(4;100,1/200) = 1 - [1 - P/(4;2,2)199[1 - P/(431,3)7®
=1 - [1 - 0.018456295199[1 - 0.007h52004] % = 0.67 .
Similarly, P’(4;90,1/200) = 0.5L.

(e) Pedestrians on a street. Furth (1920) did an empirical study of the

number of people on a certain segment of a street. TFeller (1958, pp. 370-372)
discusses this study and shows how it is related to a moving average process,
an example of a nonmarkovian process. Feller points out how this process is
related to our problem.

If the pedestrians are walking at a fixed rate, then the time each pedes-
trian spends on the segment is a constant, C. If the arrival times are expo-
nential, then the probability that the street has had at any time before T as
many as n pedestrians on it is P’(n;\,C/T).

(f) A counter problem. A Poisson process with mean rate A\ generates im-

pulses that are received by a counter. The counter registers whenever n im-
pulses have occurred together in an interval of length less than t. P’(n;\,t/T)
gives the c.d.f. of the waiting time until the first registration of the coun-
ter. Janossy (1944) and Schroedinger (19L44) consider the rate of n-fold acci-
dental coincidences in counters, and find asymptotic expressions for the prob-
ability. Domb (1950) studies various counter problems and derives an implicit
formula for the probability that k "n-clusters" occur in (0,T), where he de-
fines an n-cluster as a "recorded event whose dead period contains n-1 other

1

nonrecorded events." Domb's solution for this type of cluster is closely re-
lated to Mack's (1948, p. 784) solution for a different type of cluster (see
application (a)). Both solutions assume that overlapping effects are negligi-
ble. Domb's cluster differs in the way an earlier cluster can prevent a later

cluster.

(g) A queueing problem. Customers arrive at an n-server system according

to a Poisson process with mean ). Customers are served by any free server on a

first come first served basis. Service time is a constant, to. If k or more
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customers arrive within a time tO’ then service will stagnate (with the result
that some customers will have to wait, or some impatient customers will leave).
Solov'ev (1966) deals with this problem and gives some results for the expected
waiting time till stagnation and some approximate results for P’(n3;\,p), the
c.d.f. of the waiting time. Newell (1963) also mentions the queueing applica-
tions of P/(n;\,p) and various generalizations and derives asymptotic results.
Our experience with various examples suggests that the approximation of example
(d) together with values from Tables 2 and 2a give more accurate approximations
than these asymptotic results. For example, from Table 2 find P’(4;10,0.1) =
0.3741. This is the exact result to the nunber of places we are able to com-
pute it by averaging P(4;N,0.1) for N up to 19, and then treating the remaining
probabilities as 1. The number of significant places results from averaging
over rapidly shrinking Poisson terms. Applying the approximation of example
(d) together with the values from Table 2 gives

P’(4;10,0.1) =1 - [1 - P'(h;h,%)]u[l - P'(h;2,%)]'3

=1-[1- 0.15670925h]u[l - O.O6863OO99]_3 = 0.3740L56.

The best previous approximation, that of Newell (1963) and Tkeda (1965) is
P/(n;a,p) =1 - exp(-xnpn-l/(n-l)!), vhich for this example gives
P’(4;10,0.1) = 0.811.

(h) Breaking strength of materials. Several models postulate the breaking

of an object whenever there are several flaws within a certain distance: the
breakaway due to several close dislocations in crystals; a multistrand thread
breaking when several strands have weaknesses within a common length; earth-
quakes triggered by shift flaws within a certain distance; nervous breakdowns
resulting from several severe personal problems occurring within a short period
of time.

2.3 P(n;N,p) and P’(n;)\,p) as approximations to the probability of a general-

ized run.
Let N one's and M-N zeros be randomly arranged in a row. Let the random
variable Eﬁ be the maximum number of one's within any m consecutive positions

in the arrangement. An n:m quota is defined as at least n one's within some m
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consecutive trials. Pr(Eh > n) is the probability of a quota, and we denote
this probability as P(n in m\N in M). Saperstein (1969, 1972, 1973), Naus
(1974), Greenberg (1970), Huntington (1974, 1976) and others derive various
results for P(n in m|N in M).

Saperstein (1972) gives bounds on the upper 5% points for Eg, for
N = 5(1)15, m/M = 0.2(0.1)0.7, and certain values of M. The bounds are based
on the formula for the case n > N/2. Huntington (197k, pp. 204-285) gives ta-
bles for the distribution of P(n in m|N in M) for two classes of cases.

Case 1: m/M = 1/L, L = 2(1)5, n > [N/2] + 1.

Case 2: m/M = 0.35(.05)0.50, and full range of n.
Naus (1974) gives a simple expression for the case M/m = L, L an integer, where
n > N/2:

Pr(¥_ = n) = 2zl (/D + (ta-8-1) G G/ () - (2.2)
The formula for the other case n < N/2 is not computationally simple and is in
terms of sums of LxL determinants, For this other case, and the cases where
m/M # 1/L, L an integer, one requires either a high speed computer and substan-
tial programming effort, or an approximation. For the case where P(n in m|N in
M) is small (less than 0.1), equation (2.2) provides a good approximation for
the case n < N/2. (It is an approximation for this case because equation (2.2)
fails to count the possibility that there might be several non-overlapping sets
of n successes each within m trials. Of course, for n > N/2, this cannot hap-
pen. Tt is a good approximation for n < N/2 and small P(n in m|N in M), be-
cause the chance of two non-overlapping quotas is of smaller order of magnitude.
Equation (2.2) does take account of the nonnegligible chance that there might
be overlapping sets of n successes each within m trials.)

Another approximation is available when m and M are large relative to n
and N. The limit of P(n in m|N in M) as m -+ », M - «, such that m/M = p, is
P(n;N,p). We can use P(n;N,p) to approximate P(n in m|N in M) in much the same
way that the normal distribution is used to approximate the binomial. Table 2
in Saperstein (1972) is based on this approximation. For example, in a manu-

facturing process there were eleven defectives in 500 items coming off an
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assembly line. After reviewing the defectives it is found that six of the de-
fectives occurred within 100 consecutive trials. We approximate P(6 in lOOill
in 500) by P(6;11, 100/500) which from Table 1 equals 0.198. Equation (2.2)
gives the exact probability P(6 in 100|11 in 500) = 0.185. TIn a similar way
P’(n;%\,p) approximates the expectation over N of P(n in m|N in M), where N is a
binomial random variable. We now give applications of P(n in mlN in M).

(i) A learning criterion. Psychologists studying transfer and learning

sometimes use a generalized run criterion to decide when to terminate a partic-
ular treatment. At each trial, the psychologist counts the number of successes
in the last m trials. If at any trial this number exceeds a critical number n
(the criterion), this signals a change in the underlying process. For an ex-
periment with M(> m) trials, the critical number n is chosen to give a speci-
fied experiment wide level of significance. To set the experiment wide crite-
rion, we require the probability that within M trials there exists a subse-
quence of m consecutive trials with at least n successes. This is the proba-
bility P(n in m|N in M), or the related probability where N is a binomial ran-
dom variate.

The special case n = m deals with the event of a run of m successes.
Bogartz (1965) derives probabilities for the special case of m-2 and m-1 cor-
rect responses out of m trials. Bogartz notes that an approach based on
Markov chains is practical only for very simple cases, and gives an approxi-
mation. Runnels, Thompson, and Runnels (1968) reexamine Bogartz's approaches
and give additional calculations for the case m-1 out of m trials,

(j) Target detection systems. Various target detection systems react to

a "quota" of responses where a quota is a set of m consecutive trials in which
there are at least k successes. Goldman and Bender (1962) consider events
where a run immediately follows a quota, and derive the distribution of waiting
times till the event. The derivation is done for the case of where the run
size is at least equal to the number of successes in the quota, thereby allow-

ing treatment of the event as a recurrent event.
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For the case of run size less than the number of successes in the quota,
Brookner (1966) describes a general procedure. The procedure is to transform
the original sequence of overlapping states to an m-state first-order Markov
chain. The method is fairly general in that the original trials need not be
independent. However, the method becomes unwieldy for m and n of moderate
size because of the resulting large number of states in the transformed matrix.
The method is feasible for quotas of a few successes in a few trials.

(k) Quality control. In quality control, a point outside the control

chart limits for the mean signals that the process may be out-of-control. In
addition, runs of observations above or below the mean, even if within the con-
trol chart limits, are additional warning signs. Roberts (1958) develops a
series of zone tests that combine these two ideas. Roberts sets up zones with-
in the usual control limits such that if too many observations within a consec-
utive group of observations fall within the zone, the process is called out-of-
control. (For example, "too many" might be 4 out of 7 consecutive observations
falling between 1.28 and 3 sigma limits above the mean). To study the operat-
ing characteristics of such plans, one needs the probabilities of quotas.
Saperstein (1976) gives a variety of other zone tests.

(1) Acceptance sampling. Troxell (1972) develops acceptance sampling

plans based on a quota of batches being unacceptable. The special cases con-
sidered are 2 out of m, and 3 out of m batches. Given present results for
P(n in mlN in M), the acceptance sampling plans can be generalized to the case
of n out of m batches.

(m) Faults in a sequence of trials. Leslie (1967) describes some inge-

nious uses of a type of generalized run different than but related to quotas.
The occurrence of many leaky pipe joints within a given distance may justify
replacement. Faulty sleepers in railway tracks can cause problems if too many
occur within a given spacing. Several genetic mutations within a given dis-
tance on a chromosome may lead to defects.

(n) Other applications. Ecologists study clustering of diseased plants

in transects through a field. Meteorologists investigate the alternating of



