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Preface

Non-linear time series analysis is a rapidly developing subject. Of
necessity, it draws on deeper aspects of probability theory and more
sophisticated tools of statistical inference. It demands greater degrees of
ingenuity and common sense in model building. In return, once freed
from the shackles of linearity, the analyst has the opportunity of gaining a
fuller appreciation of the beauty of the real world. Thus, I have included
real data sets from animal populations, solar activities, economics,
finance, medical sciences, hydrology, environmental sciences, and others.
A user-friendly package is available which implements a fair proportion
of the modelling and forecasting techniques described in this book.

Although a few specialized books have recently appeared, I believe
that there is a need for a fairly comprehensive account, covering the
fundamentals of probability theory, statistical inference, model building,
and prediction of non-linear time series. In tune with modern develop-
ments in other scientific disciplines, I have adopted the dynamical system
approach, in that whenever possible I emphasize links with dynamical
systems. This is based on my unswerving belief that without well-tried
physical underpinnings, no sustainable edifice can be erected. As a
reflection of the experimental nature of this undertaking, readers will
probably observe npon-uniform motions in piaces in the book. These are
also partly due to my desire to keep the level of mathematics as modest
as possible, although I cannot claim that I have never yielded to the
beauty of mathematics. Readers are usually warned of such instances,
which are indicated by the symbols (f and §¥).

I am enormously indebted to all non-linear time series enthusiasts but
would like to mention, in particular, Kung-sik Chan, with whom I have
made many exciting excursions over the truly fascinating non-linear
terrains. Without his selfless assistance, I am sure that I would have made
many more mistakes in my navigation. All remaining errors are naturally
mine alone. I am also grateful to Doyne Farmer, Russell Gerrard, Ian
Jolliffe, Rahim Moeanaddin, Pham Dinh Tuan, Richard Smith, Akiva
Yaglom, and Zhu Zhao-xuan. Mrs Mavis Swain deserves my sincere
thanks for rendering my sometimes inscrutable writing intelligible under
very difficult conditions. Last but not least, I would like to take this
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opportunity of thanking my father, whose Chinese calligraphy has

adorned this volume.
H.T.

Canterbury
April 1989
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Some suggested set meals for the readers

(A) Fast food (for applied statisticians in a hurry or with a limited
mathematical background):

Chapter 1

Sections 2.1 and 2.2

Chapter 3

Sections 5.1, 5.2, 5.3.3, 5.3.5.3, 5.4, and 5.6
Chapter 7

(B) Vegetarian food (for those with minimai statistical background):

Chapter 1
Chapter 2
Chapter 3
A personal selection from the rest

(C) Gourmet food (for those looking for potential research problems):
Chapter 2
Chapter 4
Chapter 5

Chapter 7
Exercises and complements of all seven chapters

(D) Bangquet (for those looking for a fairly comprehensive treatment):

Enjoy your seven-course meal!

The STAR PC package

A user-friendly floppy disk STAR may be purchased from Microstar
Software (using the order form provided at the end of the book) which
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will provide a comprehensive statistical package for threshold modelling.
It may be used in conjunction with Chapter 7 to gain hands-on
experience. The package may be run on an IBM PC/XT or PC/AT or
their compatibles with MS-DOS Version 3 or PC-DOS Version 3. It has

extensive graphics.

1
Introduction

Non-linearity begets completeness:,
Misjudgment creates linearity.

Ch. XXII Lag Tzu {circa 600 5c)

1.1 Time series model building

In our endeavours to understand the changing world around us,
observations of one kind or another are frequently made sequentially
over time. The record of sunspots is a classic example, which may be
traced as far back as 28 c (see e.g. Needham 1959, p. 435).

Let us tentatively call such records time series. Possibly the most
important objective in our study of a time series is to help to uncover the
dynamical law governing its generation. Obviously, a complete uncover-
ing of the law demands a complete understanding of the underlying
physics, chemistry, biology, etc. When the underlying theory is non-
existent or far from being complete, and we are presented with not much
more than the data themselves, we may adopt the following paradigm:

(1) recognize important features of the observed data;

(2) construct an empirical time series model, incorporating as much
available background theory as possible;

(3) check that the constructed model is capable of capturing the
features in (1) and look for further improvement if necessary.

Fundamentally, an empirical time series model represents a hypothesis
concerning the probability transition over time, that is the dynamics.
Some authors have used the word ‘model’ in a different sense from the
one adopted here. For example, it has sometimes been used to mean a
forecast algorithm, the form of which is completely specified except for
some defining parameters to be determined from data. Stage (1) in the
above model-building paradigm dictates the ‘shape’ of things to come and
stage (3) judges the ‘goodness of fit’ of the delivered product. Stage (2)
may be facilitated by specifying a fairly wide class of models, denoted by
C, within which some optimal search technique, that is identification,
may then be employed. An obvious requirement is that C should be wide
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/ Perception \

Check Conception

N~

Fig. 1.1. A loop in model building

enough to include models capable of capturing the recognized features in
(1). Equally obvious is the fact that the size of C is constrained by the
amount of computation ai our dispusal for the search. A recognition of
these two aspects reinforces the belief that model building is as much an
art as it is a science.

Philosophically speaking, every specification of a times series model is
coloured by some subjective judgement. What we have described in the
above paradigm is best viewed as just one loop in a spiral of many and
each loop should lead to an empirical model closer to the objective
reality, in which the more important features are incorporated and the
less important ones discarded (cf. Box"1980) (Fig. 1.1).

The other important function of an empirical model should not be
overlooked, and that is it sharpens the perception in the next loop.

Whilst an empirical model can never replace the underlying theory, the,

former can assist the development of the latter. At the same time, each
advance in the latter can help bring about a more satisfactory empirical
model. It may be argued that statistical modelling in general, and time
series modelling in particular, should not be divorced from the underlying
scientific discipline that the final product (a statistical model) is supposed
to serve.

1.2 Stationarity

Let X, denote a real-valued random variable representing the observation
made at time ¢ For most of the book we confine our study to
observations made at a regular time intervals, and, without loss of
generality, we assume that the basic time interval is of duration one unit
of time. We may now state the following definition:

Definition 1.1: A time series, {X,}, is a family of real-valued random
variables indexed by ¢ € Z, where Z denotes the set of integers.

The more elaborate term ‘discrete parameter time series’ is not used
because we shall study almost exclusively the case with ¢ € Z. At any rate,
the subscript ¢ is reserved exclusively for this case.

i e s
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In this volume, mainly those important features with time-invariant
properties are considered.

Definition 1.2: The time series {X,} is said to be stationary if, for any
thtly, ..., th€Z,anykeZ,andn=1,2,.

FX,‘.X,Z ..... Xl"(xl, e X,,) = FX’I”" Xlz+k ''''' X,"+k(x17 ey X") (11)

where F denotes the distribution function of the set of random variables
which appear as suffices.

The term ‘strictly stationary’ is more often used to describe the above
situation, while the term ‘weakly stationary’, ‘second-order stationary’,
‘covariance stationary’, or ‘wide-sense stationary’ is used to describe the
theoretically less restricted situation in which

E(‘XH) = E(1Y1|+k) COV( %) tz) = COV(XII-H” X’Z+k) (1.2)

for all #, 1, ke Z, the covariances being assumed to exist. Strict
stationarity implies weak stationarity provided var X, exists. In the
Gaussian case, they are equivalent. Unless otherwise stated. we use the
terms ‘stationary time series’ and ‘strictly stationary time series’ inter-
changeably. In the main, we consider model building for stationary time
series or for time series which may be made stationary after some simple
transformation, such as taking differences of consecutive observations,
subtracting a polynomial or a trigonometric trend, etc.

Consider a stationary time series {X,} with finite variance. It follows
from (1.2) that cov(X,,, X,,) is simply a function of |¢, — t,|. This function
is called the autocovariance function of {x,} at lag(t,—t,). We denote it
by Y'ri‘ It has the following properties (see e.g. Priestley 1981, pp.
108-10

(1) yo=varX,

(2) 1%l=v,, VreZ

(B) Ye=v, Viel

(4) Vi, t,...,t,€Z, VY positive n € Z, and ¥ real 2y, 22y e ey Zs

n n
PPPRESED

The ratio y,/ve, T€Z, is called the autocorrelation function of {X, } of
lag 7. It is denoted by p,. Properties (2), (3), and (4) still hold if the y are
replaced by the p with corresponding subscripts. It is well known that p,
may be interpreted as a measure of linear association between X, and

X.';l:r
Property (4) is that of positive semi-definiteness and the following

~ theorem describes the positive semi-definite function defined by {p.: =
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0, 1, £2, ...} as a Fourier transform.

Theorem 1.1: A function defined by {p.:t=0, £1, £2,...}, py<, is
positive semi-definite if and only if it can be expressed in the form
P = f e'*dF(w) (1.3)

where F (defined for |w| =< &) is monotonic non—dqcreasing.

For a proof see for example Doob (1953, p. 474).

The Fourier transform F is called the (normalized) integrated spectrum.
If {p,} is absolutely summable, then F has the continuous derivative f,
given by

f(w)=i 2 p.e7" almost all e[ x, 7). 1.4)
The function f is called the (normalized) spectral density function. The
analogous equations for y, are

Y= f eiwldH((:)) (1'3,)

and
dH(w) 1 < /
=—= 7" almost all we[—m, 1.4")
h@)==3 " =5 3 1 [-m ] (
where H and k are called the (non-normalized) integrated spectrum and
the (non-normalized) spectral density function respectively. Obviously H
and F are related by
H(w)=v,F(w), all w. (1.5)

(See, for example, Priestley (1981) for a detailed discussion of the branch
of time series analysis called spectral analysis which is centred around the
spectral functions.)

1.3 Linear Gaussian models

It is a remarkable fact that linear Gaussian models have dominated the
development of time series model building for the past five decades. It
may be said that the era of linear time series modelling began with such
linear models as Yule’s autoregressive (AR) models (1927), first intro-
duced in the study of sunspot numbers. Specifically, the class of AR
models consists of models of the form

k
X,=ap+ 2, aX,_;+E (1.6)

j=1

1.3 LINEAR GAUSSIAN MODELS 5

“where the a; are real constants (a,#0), k is a finite positive integer

referred to as the order of the AR model, and the &, are zero-mean
uncorrelated random variables, called white noise, with a common
variance, 0%(<®). Symbolically, we express (1.6) by X, ~ AR(k). A more
general class of linear models is obtained by replacing ¢, by a weighted
average of ¢, &_,, ..., _;, that is

& 1
Xo=ao+ D, a,X,_;+ > b, (1.7)
j=t ©j=0
where the b; are real constants (b, #0) and b, may be set equal to unity
without loss of generality. This is the so-called class of
autoregressive/moving average (ARMA) models. Symbolically, we ex-
press (1.7) by X, ~ ARMA(k, [). Here, [ is a finite non-negative integer
referred to as the order of the moving-average part of the ARMA model.
The special case of ARMA(0,!) is referred to as the moving-average
(MA) model of order /, denoted by MA(/).

We now introduce two conditions on the ARMA models. At the
expense of some slight loss of theoretical generality, these two conditions’
lead to sharper results and some simplification of discussion. In any case,
it seems that they are often made in practice, either explicitly or
implicitly.

Condition A; The roots of the polynomials

A(z)=z"- i a;z*7 (1.8)
B(z)= Z biz'™ (by=1) (1.9)

all have modulus less than one. A and B will be called the autoregressive
generating function and moving-average generating function respectively.
Condition B: {¢,} is a sequence of independent identically distributed
random variables (an i.i.d. sequence), each with the distribution
N(0, 6%). {&,} is referred to as a Gaussian white noise.

Let
pemuf(i-$a) o e ] P

Under these two conditions, and subject to X, having a N(ux, 0%)
distribution:

. {X,:t=1,2,...

2. Vi,b,...,t€Z,, the set of non-negative integers, and Vk
belonging to the set of positive integers, (X,,, X,,, . . ., X, ) is jointly
Gaussian. {X,:r=1,2,...} is called a Gaussian sequence.

} is stationary.
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3. X, admits the linear (one-sided) model/linear representation

X,=ux+2, Bie—; with 2, f3<», =1, and uy =EX,. (1.10)
j=0 =0

3'. Likewise & admits a linear model in terms of X, s=<¢ This is

sometimes called the invertibility of {X,} (see e.g. Rosenblatt 1979).

Henceforth, unless otherwise stated, all ARMA models are assumed to
satisfy Conditions A and B. We may sometimes emphasize this fact by
referring to them as stationary Gaussian ARMA models. On the other
hand, if a model for {X,} is of the general form (1.10) which possesses
properties (1) and (2) and in which {¢} is an i.i.d. sequence (and
necessarily Gaussian), it is called a linear Gaussian model. Henceforth,
by an abuse of terminology, we do not distinguish between a time series
mode! and the time series defined by it. Now, a weli-defined linear
Gaussian model for {X,} is completely specified by the mean, uy, and
the autocovariances, y,, of {X,}, or equivalently by u, and the (non-
normalized) spectral density function, A. Note that

! 2

h(a))=§

o (1.11)

=
2 BV
i

which is a continuous integrable function of w. On the other hand, an
ARMA model has a (non-normalized) spectral density function of the
form

2

o
2n

B(e™'*)
A(e—iw)

(1.12)

which is a rational function of ¢, It has been said that ARMA models
enjoy the same degree of generality among the class of linear Gaussian
models as rational functions among the class of continuous integrable
functions (see e.g. Priestley 1980, p. 283). Of course, an ARMA model

has the significant property of consisting of only a finite number of’

parameters. From the point of view of model building, we may conclude
that if and only if the autocovariances are considered an important feature,
the class of ARMA models constitutes a useful choice of C.

1.4 Some advantages and some limitations of ARMA models

The strengths and weaknesses of stationary Gaussian ARMA models are,
in fact, already subsumed in the conclusion of the last section. We
elaborate them as follows. Proofs of some of the results cited in this
section will be given in full in Chapter 4.

1.4 ADVANTAGES AND LIMITATIONS OF ARMA MODELS 7

'1.4.1 SOME ADVANTAGES

In the following discussion, we merely highlight some of the significant
achievements of the ARMA models.

1. Mathematically, linear difference equations are the simplest type
of difference equations and a complete theory is available. Probabilisti-
cally, the theory of Gaussian sequences is readily understood. The theory
of statistical inference is the most developed for linear Gaussian models,

The class of stationary Gaussian ARMA models has an elegant and
tundamental geometric characterization in terms of the concepts of a
predictor space and a Markovian representation introduced by Akaike
(1974a). These concepts are rooted in control systems theory. He has
shown that a stationary Gaussian time series has a stationary Gaussian
ARMA representation if and only if its predictor space is finite-
dimensional. :

2. The computation time required for obtaining a parsimonious
ARMA model for the data is well within the reach of most practitioners.
Ready-made packages are available. Over the years, much experience
has been accumulated in the application of ARMA models (see e.g. Box
and Jenkins 1976).

3. These models have been reasonably successful as a practical tool
for analysis, forecasting, and control (see e.g. Box and Jenkins 1976).
They have not survived 60-odd years for nothing! We must conclude that
they represent the objective world to a good first approximation.

1.4.2 SOME LIMITATIONS

Once again, in the discussion that follows we merely highlight some of
the current interests in the subject of time series modelling. The
discussion will be interspersed with the introduction of terminology,
concepts, and theoretical results mostly relevant to later exposition.

1. On setting the innovation ¢, to a constant for all ¢ (or equivalently
on setting varg to zero), eqn (1.7) becomes a deterministic linear
difference equation in X. Under condition A, X, will always tend to a
unique finite constant, independent of the initial value, as ¢ tends to
infinity. The situation is described as a stable limit point. If A(z) has one
root greater than unity in modulus, |X,| will tend to infinity with ¢, and
the situation is described as being unstable. If A(z) has some roots equal
to unity in modulus and the others less than unity in modulus, X, will
eventually osciallate among a set of points whose values depend on the
initial value. The situation is described as being neutrally stable. We have
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here merely restated the well-known result that a linear difference
equation does not permit stable periodic solutions independent of initial
value. This point will be developed further in Chapter 2.

2. Having symmetric joint distributions, stationary Gaussian ARMA
models are not ideally suited for data exhibiting strong asymmetry.
Figure 1.2 gives one typical set of hydrological data, a Gaussian model
for which would be of limited value.

3. ARMA models are not ideally suited for data exhibiting sudden
bursts of very large amplitude at irregular time epochs. This is clear in
view of the normality of ARMA models. Essentially, ARMA medels are
more suitable for data with negligible probability of very high level
crossings (and there are plenty of these about). We may recall the
elementary result that if the kth order moment of a random variable X
exists, then

P[iX|>c]=0(lc|™) as c—>°;>. (1.13)

Thus, the probability of large excursions is connected with the existence
of moments. If the sei of all possible values of X is bounded from both
sides, then the distribution of X has the moment property, that is
moments of all orders exist (see e.g. Fisz 1963, p. 68). However,
boundedness is not necessary since, for example, it is obvious that a
Gaussian random variable (and hence a stationary Gaussian sequence)

has the moment property. .

It is interesting to note that models without the moment property may
be constructed by some kind of stochastic ‘perturbation’ of the ARMA
models. Consider a stochastic perturbation of an AR(1) model in the
form of

X,=(a+be)X,_, +& (1.14)

where {¢,} is a Gaussian white noise with zero mean and, without loss of
generality, unit variance. The coefficient of X,_, is no longer a constant
but is a random variable, which is a linear function of &, This model is a
special case of the general class of models called bilinear models, which
will be discussed in more detail later. )

Figure 1.3 illustrates the phenomenon of sudden bursts of the above
class of models. We may prefer these models to the ARMA models when
dealing with a situation of this type.

4. Since the autocovariances, y; (j € Z), are only one aspect of the
joint distributions of (X,, X,—), (j € Z), other aspects may contain vital
information missed by the y;. One such aspect is, for example, the
regression function at lag (j), that is E(X, | X,_;), (j € Z). For the ARMA
models, these are all linear because of the joint normality. This

1.4 ADVANTAGES AND LIMITATIONS OF ARMA
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12

T

Fig. 1.3. A realization of the model X,=(-0.1+0.9¢)X,_, + ¢, & — #(0, 1).
(The theoretical standard deviation of X, is 2.357)

characteristic may sometimes weaken the usefulness of ARMA models
for data exhibiting strong cyclicity. The following situation seems to have
some practical relevance.

The autocorrelation function of strongly cyclical data is also strongly
cyclical. At those lags for which the autocorrelation function is quite
large in modulus, the corresponding regression functions may be
sufficiently well approximated by linear functions. However, at those lags
for which the autocorrelation function is quite small in modulus, a linear
approximation for the corresponding regression functions is not always
unquestionable. Indeed. it is conceivable that the strong cyclicity of the
data may be linked with a strong association (not necessarily measurable
by the autocorrelation function which measures only linear association)
between X, and X,_;, j=+1, %2,..., £L, for some finite integer L. In
this case, a non-linear approximation for the regression functions may
well be more appropriate for those lags with small autocorrelations. We
may illustrate the above situation with the classic annual Canadian lynx
data (1982-1934) (See Figs 1.4-1.6.) We shall return to a more
comprehensive analysis of these data later.

In fact, the use of sample regression functions in the time series context
goes right back to Yule (1927). The use of sample regression functions

v s — —————. + s,

1.4 ADVANTAGES AND LIMITATIONS OF ARMA MODELS 11

Fig. 1.4. Logarithmically transformed MacKenzie River series of annual Cana-
dian lynx trappings from the years 1821-1934
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Fig. 1.5. Sample regression function of X, on X,_, for the data in Fig. 1.4.

Sample autocorrelation function of lag 1 is 0.79. Sample estimate of

yopi/var{E(X, | X,-,)} is roughly 1. The linear fit for the regression of X, on X,_,
implied by a linear Gaussian time series model is quite reasonable
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Fig. 1.6. Sample regression function of X, on X,_; for data in Fig. 1.4. Sample

autocorrelation  function of lag 3 is —0.13. Sample estimate of

Yop3/var{E(X, | X,-)} is roughly 0.04. A linear Gaussian time series model for

the data would imply an almost horizontal linear fit for the regression of X, on
X, s, which is clearly poor
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Fig. 1.7. Non-parametric regression, E{X | Z =z}, of river flow (X) on tem-

perature (Z) for the River Jokulsa Eystri, Iceland. The method does not assume

an a priori functional form but is based on a (kernel) smoothing on the data

histograms. Specifically, let {6y(z)} denote a sequence of symmetric and

non-negative functions of z, of area 1, with the property that 8,(z)—> Dirac delta

function as N~>=», Then E{X | Z =z} = )L, x,0n(z — 2)/ L%, 6n(z — z;), where
(x1, z1), . . ., (xv, zy) denote the N data points

may be easily extended beyond univariate time series. Figure 1.7 gives an
illustration of regressing river flow on temperature. The non-linear effect
due to the melting ice of a glacier within the catchment area of the river
is clearly evident. More details about the analysis of these data will be
given in the final chapter. ’

5. ARMA models are not ideally suited for data exhibiting fime
irreversibility. Figures 1.2 and 1.4 show examples of such data. A simple
yet effective way of visualizing this is by tracing these data on a
transparency and then turning it over.

One way of gaining further insights into the effect of time reversibility
on the probabilistic structure of the time series {X,} is to introduce
higher-order spectra. We will deal with this point in Chapter 4.
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‘1.5 What next?

After six decades of domination by linear Gaussian models, the time is
certainly ripe for a serious study of ways of removing the many
limitations of these models. Once we decide to incorporate features in
addition to the autocovariances, the class of models would have to be
greatly enlarged to include those besides the Gaussian ARMA models.
We may either retain the general ARMA framework and allow the white
noise to be non-Gaussian, or we may completely abandon the linearity
assumption.

In the former case, limitations 2, 3, 4, 5 of Gaussian ARMA models
can be removed, to some extent, by a judicious choice of the distributions
of the &. As a typical illustration, let us consider E(X, | X,_;) for the
following non-Gaussian MA(1):

X, =¢g —ag_, (1.15)
where ¢, has a uniform distribution on (—\/5, V3). After some non-trivial
manipulation E(X, { X,_)) is shown to be non-linear as illustrated in Figs
1.8 and 1.5,

Shepp et al. (1980) have given a detailed study of the regression
functions, E(X,|X,_1, ..., X._t), k being any positive integer, for a
non-Gaussian MA(/). Another example, which is probably the simplest
although a little extreme, is taken from Whittle (19634, Section 2.6) and
Rosenblatt (1979). Consider the stationary AR(1) model

X = %Xl-—l + &
where

_ {% with probability 3
&= 10 with probability }

E X1 Xi-1=x) ‘r«
avik
1 (@a-1v3 1
—(1+a)V3 @ -1)v3 (1+a)Vv3 x
-av3

Fig. 1.8. Regression function of lag (1) of model X, = ¢, —a¢,,;, & uniformly
distributed on (—V/3, V3); (a = 1)
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Fig. 1.9. Regression function of lag (1) of model of X, = ¢, — ag,,, & uniformly
distributed on (—V/3,V3); (a<1)

and ¢, is independent of X;, s <t X, is then uniformly distributed on
[0, 1] and

2X,=X,_,+2¢,
= X,_, (modulo 1).

Obviously,

E(X, | X,_)=3X,_, +1
which is linear in X,_,. However,
E(X,_, {X,) =2X, (modulo 1)

which is non-linear!

There is no doubt that further exploration within the non-Gaussian
ARMA framework may be quite fruitful. We may argue that the failure
of non-Gaussian ARMA models to remove limitation 1 means that it
would be appropriate to look elsewhere for models possessing much
richer dynamical properties. The pages which follow will’ be devoted
entirely to the removal of the linearity assumption. To end the chapter
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the following classification summarizes the situation:

Linear non-Gaussian models

e.g. ARMA models with
non-Gaussian white noise

Linear Gaussian models

e.g. ARMA models with
Gaussian white noise

Non-linear Gaussian models Non-linear non-Gaussian Models

e.g. Gaussian output with e.g. read on!
non-Gaussian white noise
input through a non-linear

filter

Bibliographical notes

The philosophical attitude adopted in this book is similar to that more
eloquently discussed by Box (1980). It leans on dialectics. The basic
theory of stationary time series is covered in Doob (1953) at a
sophisticated level and in Priestley (1981) at a level more readily accessible
to the non-specialists of probability theory. Akaike (1974a) is a remark-
able paper, which completes the geometric delineation of ARMA models
within the class of linear time models. The parallel picture in the class of
non-linear time series models has no more than a few strokes on it (see
Chapter 4). Serious limitations of linear Gaussian time series models in
practical situations were mentioned earlier by Akaike, Cox, Galbraith,
and Tunnicliffe-Wilson in the discussions of the papters by Campbell and
Walker (1977) and Tong (1977b) on the analysis of the classic Canadian
lynx data. More attention seems to be warranted in respect of time
irreversibility.

Exercises and complements

(1) Let {X,} denote a stationary Gaussian time series. Prove that
E[X, | X,=x] =E[X, | X, =x).
Generalize the result to higher-order conditional mements.
(2) Consider the strictly stationary AR(1) model
X, =5iX_,+& =1
where X, is uniformly distributed on [0, 1],
_ {% with probability 3
0 with probability 1
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and ¢, is independent of X, s <t. Show that the joint distribution of
(Xo, X,) is different from that of (X, X,). Let the times series {X,}
be instantaneously transformed to the time series {Y,} via

Y,=®7(X,), each ¢
where @ denotes the standard Gaussian distribution function. Show
that, for each ¢, Y, has a standard Gaussian distribution. Is {Y;} time

reversible?

Let {X,} be a strictly stationary time series all of whose joint
distributions are symmetric about the origin. Prove that {X,} need
not be time reversible. Does time reversibility imply symmetry of all
joint distributions about the origin?

Suppose that X, is uniformly distribution on (0, 1). Let
X, =2X,_, (modulo 1) t=1
that is X, is the fractional part of 2X,_,. Prove that the joint
distributions of (X,,., X,) are degenerate and that
~—ltl

P4

12

cov(Xrr X)) =

Show that the linear least-squares predictor, X,, of X, given all past
values is given by
X: =3+ %X:—l
which has mean square error of prediction equal to .
[Hint: Consider a binary representation of X,).

Let {X,} denote a Gaussian time series with zero mean and unit
variance. Suppose that it has a (normalized) spectral density
function f. Let

Y,=X?-1, foreachu

Verify that {¥;} has normalized spectral density, A, given by

hw)= [ £ - 0)7(0) do

Let
X, =(a+beg)X,_,

where {g} is a sequence of independent identically distributed
random variables with zero mean and unit variance. Suppose that
a®+ b?< 1. Prove that X,— 0 in probability as t—> .

it v

(7) Show that the sequence {X,, X, ..

EXERCISES AND COMPONENTS 17

. } is strictly stationary if and
only if there exists a sequence {Y;, Y5, . .. } such that, for any n, the
joint distribution of (X;, X,,..., X,) is the same as that of
(Kn Y;x—l: L ] Yl)

(Kingman and Taylor 1966, p. 394)



