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Preface

Signal processing methods and techniques now form the basis of very
important developments in physics, electrical and electronic engineering,
particularly in communications and radar-sonar systems, instrumentation
and industrial process control. During the last decade digital methods for
signal processing have become more significant in that now they not only
replace the more classical analogue techniques in many relevant areas, but
they are also being applied in many new areas.

There are several reasons for this development: the consistently high
efficiency of digital techniques permits better signal processing and analy-
sis; there is greater flexibility within applications; and there is an increasing
availability of general purpose computers and minicomputers, or indeed
special type digital processors, at a decreasing cost. Digital techniques have
also become more important in two-dimensional (2-D) signal or image
processing.

Of all the methods and techniques used for digital signal processing,
digital filtering is the most important. In the past it has been limited to
theoretical research, but recently has been used in many important prac-
tical applications for processing 1-D and 2-D signals. This fact may be
attributed to:

(i) the availability of efficient and relatively simple design methods;

(ii) extremely fast and impressive technological advances in large and very
large scale integration circuits for multipliers, accumulators, memories,
with an increase in maximum working frequency and new devices, such
as charge coupled devices (CCD) and surface acoustic wave (SAW)
devices;

(iii) advances in computer hardware and software, particularly with the
introduction of microprocessors and microcomputers, and implemen-
tation of fast array processors, which are useful as peripheral parts of a
computing system or as the main processing system.

As a result of the above developments, digital filtering techniques have

been introduced during the last few years in different and extremely
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vi PREFACE

important areas such as communications, radar-sonar, the processing of
results of physical experiments, aerospace systems, biomedicine, earth
resource satellites, etc.

In this book the theory and design of digital filters (1-D and 2-D) are
presented together with a description of their practical utility and appli-
cation in many areas of signal and image processing.

The book is divided into three main parts. The first part (Chapters 1 to 4)
is essentially tutorial in character and summarizes the basic relationships
for the different types of digital filters, presenting design methods and
analysing the error and stability problems. From this mathematical basis, in
the second part (Chapters 5 to 7, Appendices 1 to 4), criteria for the
practical design of 1-D and 2-D digital filters are derived, and coefficient
values, frequency responses and efficiency comparisons are presented. The
implementation problems are also considered: useful computer programs
are listed and hardware realizations are described. In Appendices 2 to 4,
some relatively simple but efficient computer programs (FORTRAN V)
are presented, both for performing the design and the actual filtering. The
third part (Chapter 8, Appendices 5 and 6) describes the impact of digital
filters in research, operative and industrial areas, presenting interesting
applications to signal and image processing in communications, radar,
biomedicine, power systems protection and remote sensing.

We have included not only 1-D but also 2-D digital filtering methods
and techniques. Thus we are able to compare 2-D problems with 1-D
problems and we can clarify which of the methods and techniques used in
1-D can also be applied in 2-D.

It is hoped that the approach adopted in this book, with the inclusion of
the theoretical aspects of the subject as well as the practical implemen-
tation procedures, will be of interest to researchers and also to practising
engineers.

The co-operation of the research groups involved in signal processing at
Imperial College, London, at Florence University and at IROE-CNR
Institute has made the writing of this book possible. We have drawn both
from our own individual experiences and from joint research efforts in
bringing together the theoretical developments and the practical appli-
cations included in the book. We should also like to thank the British
Council for their encouragement and support during the early stages of the
above research and also the Consiglio Nazionale delle Ricerche for their
support.

The understanding and support of Professor E. C. Cherry, Head Com-
munication Section, Department of Electrical Engineering, Imperial
College of Science and Technology, and also of Professor G. Francini,
Dean of Facolta di Ingegneria, Florence University, are gratefully
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acknowledged. Professor G. Toraldo di Francia, Director of IROE-CNR
Institute and Professor N. Carrara, President of the Scientific Council of
the Institute, have been constant and continuous supporters of the entire
enterprise. Our colleagues at the Communication Section, Department of
Electrical Engineering, Imperial College and at the Istituto di Elettronica,
Facolta di Ingegneria have been most helpful with criticisms and comments
for which we are very grateful. The co-operation of Professor M. Fondelli at
Facolta di Ingegneria, the help of Dr D. Benelli, Dr M. Bernabo’ and Dr E.
Del Re of the Istituto di Elettronica is appreciated and in particular the
contribution of Yusif Fakhro (Appendices 1 and S) and Majid Ahmadi at
Communication Section, Department of Electrical Engineering. The help
of Manos Tzanettis and his comments on the manuscript were invaluable.

Other institutes were helpful for specific topics. In particular we
acknowledge the contribution by Professor T. W. Parks, Rice University,
for Remez exchange algorithm (Appendix 3), Dr K. G. Beauchamp, Uni-
versity of Lancaster (Section VIG), and Dr L. Fusco and co-workers at
CSATA in Bari, Dr G. Mottola at Universita di Trieste, and Dr G.
Garibotto at CSELT in Turin for interesting digital image processing
results.
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Chapter 1

Digital Filters

IA Introduction

In this chapter the fundamental properties of linear digital filters are
presented as linear transformations on discrete time functions. Firstly
discrete functions are examined in general and subsequently the particular
case of discrete functions derived by sampling continuous functions is
considered in some detail for its direct relevance to practical applications.
The fundamental properties of z-transform, the transform for discrete
functions, are summarized. Then the definition of discrete linear systems is
given, including descriptions in the time domain, frequency domain and
z-transform domain.

Causality, recursivity and stability are discussed, and algorithms for
stability tests and stabilization of unstable filters are included; these
algorithms are of particular interest, as it will be observed, in the two-
dimensional (2-D) case.

Realization structures from given transfer functions are discussed.

Finally the main properties of Discrete Fourier Transform (DFT) and of
Fast Fourier Transform (FFT) are summarized, pointing out the aspects
more useful for the design and implementation of digital filters.

IB Discrete functions

In the following, the properties of linear digital filters, defined as trans-
formations of discrete functions, are described.'**>1¢



2 DIGITAL FILTERS

Discrete functions are defined only for discrete values of their variables,
that is they are sequences of numbers. These numbers can be obtained as
quantized samples of a continuous function (representing an analogue
signal or image) or they can be the values of a discrete variable such as the
readings indicated by, or the output data of, a digital counter. The
sequences thus obtained are then processed to obtain other sequences.

The notation which is used for one-dimensional (1-D) sequences is the
following

{x(n)} Ni=n=N, (1.1)

where N; =—00 and N, = oo for infinite sequences.
For two-dimensional (2-D) sequences, the notation is

{x(ny, n2)} Ni=ni=N,, Mi=n,=M, (1.2)

where N; = M; =—00 and N, = M, = o for double infinite sequences.

We can observe that within the terms sequences of numbers and numeri-
cal transformations of sequences the quantization aspect is conceptually
included due to the implicit finite precision needed for any numerical
representation. However in the development of the theory of discrete
linear systems we consider the more general case of sequences of numbers
with infinite precision. Thus we use functions whose variable is defined on a
discrete set of values, but whose amplitude can assume any value in a
continuous way within a specified range.

In Chapter 4 we discuss in some detail the effects and consequences of
the amplitude quantization of the input and output sequences of a system,
of the numbers which define a system and the arithmetic operations
involved in a system.

In many applications, sequences of the type (1.1) and (1.2) are obtained
by taking samples of continuous or analogue signals and images. Therefore
we consider more precisely the way an analogue signal is related to its
samples leading to the sampling theorem.

IC The 1-D sampling theorem

One of the most important applications of digital filtering techniques is in
the processing of sequences of samples derived from continuous or an-
alogue signals. This is made possible due to the results and implications of
the sampling theorem.?

This theorem can be stated as follows: ““A continuous analogue function
x(t) which has a limited Fourier spectrum, that is a spectrum X (jw) such
that X (jw)=0 for @ > w.m, is uniquely described from a knowledge of its
values at uniformly spaced time instants, T units apart, where T =27/ w
and w, =2w,,”.



IC THE 1-D SAMPLING THEOREM 3

To prove this theorem, consider a function x(¢) with a Fourier transform
X (jw) given by
X(jw)=0 for 0> Wy (1.3)

as shown in Fig. 1.1(a).

x(j®)
- K

T 73
xp(i'-”)
(b) !
1 |
| !
~wg -wgf2 0 Wsf2 ws -
xp(j )
© I I
l |
Wy w2 0 @2 W, «

F1G. 1.1. (a) Fourier transform of a function x(¢); (b) sampled signal spectrum with
ws/2 = wy,; (c) sampled signal spectrum with w,/2 < w,,, showing the aliasing phenomenon.

Consiaer now a periodic function X, (jw) with period ws, which is iden-
tical to X (jw) in the interval —w;/2=<w <w,/2. This function can be
expanded in a Fourier series in the form

X,(jo)= Y xe T (1.4)
k=—0c0
with coefficients
1 ms/2 )
Xk =—j X(jo)e™ T dw 1.5)
Ws J—wy/2

Now the expression of x(¢) as a Fourier transform of X (jw) is given by
ws/2 )
x(t)=——J X (jw) ™ dw (1.6)
277 —ws/2
Setting ¢t = kT, we obtain for the samples of x(¢), T units apart,
w/2

x(kT)=5;J X(jw)e™* " dw 1.7)

—wg/2



4 DIGITAL FILTERS

and by comparing the two expressions (1.5) (1.7) it is easy to obtain
Xk =Tx(+kT) (1.8)

Therefore, if we know the values of x(kT) for k =—o0, o0, the Fourier
series of the periodically repeated spectrum is uniquely determined by
these samples. Further we can show that when s = 2w,,, an expression
can be found for reconstructing the continuous analogue signal from its
samples. Over the interval —w,/2, w,/2, the signal x(t) can be expressed in
the form

1 f«/? © ) ) 1 = w/2 ' ‘
X(t)=—I ( Y xke_"”kT>e"”’dw=— 3 xkj g KT ot g

27 Jovrya \k=" 27k Loy

1 B 2 kme . 12 sin[w,(t—kT)/2] »
TTRR I_w,/ze o= Z 5% ot—ky2 (19
and by using (1.8) we obtain
= sin[w,(t—kT)/2]
= L x(kT)( w,(1—kT)/2 ) (1.10)

The relation (1.10) can be interpreted as the convolution summation of a
sequence of pulses, with amplitude x(kT) with the analogue filter impulse
response

sin wst/2

h()= wst/2

(1.11)

This is the impulse response of an ideal and therefore not physically
realizable low-pass filter, having a constant amplitude transfer function
equal to T in the interval —w,/2, w,/2 and zero elsewhere. It can be
observed that, whilst this filter is indeed not physically realizable (its
impulse response is anticipatory), it can be approximated nevertheless by
using a sufficiently long time delay.

It is now important to point out that the samples of the signal determine
only the periodic spectrum X, (jw), which is called the sampled signal
spectrum. This spectrum has been obtained through the periodic repetition
of the original band-limited spectrum, using a period equal to w, The
sampled signal spectrum can also be obtained in general by shifting the
spectrum of the continuous signal to all the multiples of w, and by summing
all these shifted spectra, that is

X(j0)=7 L X(o-jnw.) (1.12)

1
T,



