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Preface

This monograph makes a comprehensive review of some of the developments in the
theory of survey sampling in the superpopulation model-based approach, starting
from an assessment of the situation in the classical fixed-population area.

Chapters 1 and 2 are based on the model of fixed population. Chapter 1
introduces the preliminary concepts, sampling designs, estimators, sampling
strategies, various classical estimators, etc. Chapter 2 addresses some inferential
problems, e.g., uniformly minimum variance unbiased estimation, admissibility,
sufficiency, minimax estimation in survey sampling. The remaining chapters have
developed from the assumption of some superpopulation models depicting the survey
population.

Chapter 3 considers model-dependent optimal strategies in the prediction-
theoretic approach. Chapter 4 deals with the robustness of these strategies under
specific model-failures; Chapter 5, the class of strategies which combine
randomization both due to sampling designs and the superpopulation models.
Chapter 6 addresses the asymptotic properties of these strategies and their
robustness.

The following chapter examines the robustness of model-dependent and
modelbased strategies in the asymptotic sense. This chapter also identifies
regression superpopulation models for which the prediction-estimators become
robust. Biasrobust estimation including non-parametric calibration are also
discussed. In the design-based conditional approach of Chapter 8, inference is
restricted to a part of the sample space which satisfies certain properties.
Conditionally optimum estimators are studied in this light. The next chapter
addresses design-based calibration estimation of finite population parameters under
different distance functions. The concepts of calibration with restricted weights,
extended calibration, mitigated calibration are examined. Model-based calibration is
discussed in the following chapter and its optimality investigated. The concluding
chapter considers yet another approach to estimation, empirical maximum likelihood
estimation in finite population sampling. The performance of this approach vis-a-vis
calibration approach is examined.

As has been noted in Chapter 2, the arguments based on a fixed-population model
do not lead to any optimality result in general. In a broader perspective, survey
population can be looked upon as a realization of a superpopulation and many
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decisive results can be attained in this set-up. The thrust of the book is, therefore, on
superpopulation model-based inference. One important finding is that the generalized
regression estimator (greg) plays a prominent part, specially, in large scale sample
surveys.

This book does not cover, among others, Bayesian approaches in survey
sampling, model-based variance estimation and an important application, small area
estimation. These have been covered in some details in Mukhopadhyay (2000a, 1996,
1998b) respectively.

The book, to some extent, may be considered as an up-to-date version of, but not
restricted to, works in Mukhopadhyay (1996). However, many useful results of the
earlier book have not been revisited here.

In writing this book I have attempted to arrange and reconcile the results
systematically in a lucid manner and indicate new research areas. Various examples
and supplementary exercises have been added to clarify the ideas. We have assumed
that the reader has a basic degree in Statistics and is acquainted with the
developments in survey sampling at the level of Cassel, ef al. and Mukhopadhyay
(1998a). The book can not be a stand-alone text book for the fixed-population part,
but may serve as a self-contained study material for the model-based part, generally
of use to the researchers.

The book was partially written during my assignment in the University of South
Africa, Pretoria. My family helped me a lot by silent inspiration. An acknowledgement
is due to my daughters-in-law Jayita and Shilpi who assisted me in arranging the
manuscripts.

Kolkata, India Parimal Mukhopadhyay
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Chapter 1

The Preliminaries

1.1 Introduction

Sample survey, finite population sampling or survey sampling is a method of drawing infer-
ence about the characteristic of a finite population by observing only a part of the popu-
lation. Different statistical techniques have been developed to cater to these needs during
the last few decades.

In this chapter we examine a model for a fixed finite population which formed the basis
of the earlier exposition of the theory. The set-up established in this chapter would be
fundamental to our discussion mainly up to Chapter 2.

1.2 The Basic Model

We assume that we have a finite population of distinct units, with a known population size
and a variable of interest taking real values on these units. In an enumerative survey the
primary task of the survey statistician is to estimate some descriptive characteristics of the
population, e.g., population total, mean, variance by suitably choosing a subset (sample)
of the population and observing the values of this variable only on the units in the selected
subset. (In analytic surveys we consider estimation of superpopulation parameters and
these will be considered in Chapter 3 onwards. For the time being we consider the fixed
population model and the associated enumerative surveys).

To formulate the basic fixed population model precisely let us consider a few definitions.

DEFINTION 1.2.1: A finite (survey) population P is a collection of a known number N

1



2 Survey Sampling

N of identifiable units labelled 1,...,7,...,N,P ={1,...,4,..., N}, where i stands for
the physical unit labeled <.

The above definition excludes from its coverage the populations of the following types:
batches of industrial products of the same specification coming out from a production
process as the units are not distinguishable individually; population of fishes in a lake
as the population size is unknown. Collection of households in an area, industrial units
in an urban complex, agricultural fields in a village are examples of survey populations.

Let y be a study variable having value y; on ¢ = 1,..., N. Associated with P we have
a vector y = (y1,...,yn) which constitutes the parameter for the model of a survey
population, y € R, the parameter space. One is often interested in estimating a
parameter function 6(y), e.g., population total, T = Zf.’__l yi, population mean, § =
>N, vi/N = T/N, population variance S? = (N — 1)7! Zf;l(y,- — )2 by choosing a
sample (a part of the population, defined below) from P and observing the values of y
only on the units in the sample.

DEFINITION 1.2.2: A sample is a part of the population.

A sample may be selected with replacement (wr ) or without replacement (wor ) of the
units already selected to the original population.

A sample when selected by a wr -sampling procedure may be written as a sequence,
Se=fljielnt; 1EHEN, i=1,%5n, (1.2.1)

where i; denotes the label of the unit selected at the tth draw and is not necessarily
equal to iy for t # t/(= 1,...,N). For a without replacement sampling procedure, a
sample when written as a sequence, is

S={i1,...,in}, 1< < Nyiy #ip for t £ (=1,...,N) (1.2.2)

since repetition of units in S is not possible. Arranging the units in the sample S in an
increasing (decreasing) order of magnitudes of labels and considering only the distinct
units, a sample may also be written as a set s. For a wr-sampling of n draws, a sample
written as a set is, therefore,

E=(Jrpessdisihs 1EH S Chumy =N (1.2.3)

where v(S) is the number of distinct units in S. In a wor-sampling procedure, a sample
of n draws, written as a set is,

3=(j1»---,jn)v15j1<---<jn§N- (124)

Thus, if in a wr-sampling, S = {2,5,2,1}, the corresponding s is s = (1,2,5) with
v(S) = 3. Similarly, if for a wor-sampling procedure, S ={3,7,1}, the corresponding s
is s = (1,3,7). Clearly, information on the order of selection and repetition of units in
the sample S is not available in s.
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DEFINITION 1.2.3: Number of distinct units in a sample is its effective sample size. In
(1.2.3), v(S) is the effective sample size, 1 < v(S) < n. For a wor-sample of n draws,
v(8) = p(3) =mn.

Note that a sample is a sequence or set of some units from the population and does not
include their y-values.

DEFINITION 1.2.4: The sample space is the collection of all possible samples and is
often denoted as S. Thus S = {S} or {s} according as we are interested in S or s.

In a simple random sample with replacement (srswr) of n draws S contains N™ samples
S. In a simple random sample without replacement (srswor) of n draws S contains
(N), samples S and (N) samples s where (a), = a(a—1)...(a—b+1),a > b. If the
samples s of all possible sizes are considered in a wor-sampling procedure, there are g
samples in S.

DEFINITION 1.2.5: Let A be the minimal o-field over S and p a probability measure
defined over A such that p(s) [ or p(S)] denotes the probability of selecting s[ or S |,
satisfying

0
1.

p(s) [P(S)]
YsesP(8) [EsesP(S)]

One of the main tasks of the survey statistician is to find a suitable p(s) or p(S). The
collection (S, p) is called a sampling design, often denoted as D(S,p) or simply p. The
triplet (S,.A, p) is the probability space for the model of the finite population.

v

(1.2.5)

The expected effective sample size of a sampling design p is

E{v(S)} =) v( Z pP[v(8S) = u) = v. (1.2.6)

SeS p=1

We shall denote by pn, the class of all fixed effective size [FES(v)] designs, i.e.
pn={p:p(s) >0=v(S)=v}. (1.2.7)

A sampling design p is said to be noninformative if p(s)[p(S)] does not depend on the
y-values. In this treatise, unless stated otherwise, we shall consider non-informative
designs only. Informative designs have been considered by Basu (1969), Zacks (1969),
Liao and Sedransk (1975), Stenger (1977), Bethlehem and Schuerhoff (1984), among
others.

Basu (1958), Basu and Ghosh (1967) proved that all the information relevant to making
inference about the population characteristic is contained in the set sample s and the
corresponding y-values (Theorem 2.3.1). As such, unless otherwise stated, we shall
consider samples as sets s only.
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The quantities

m= ZP(S), Tij = Z p(s)

$31 $3(1,7)
Tide = 2, D(8) (1.2.8)
39(1 vvvv Ik)
are, respectively, the first order, second order, ...,kth order inclusion-probabilities

of units in a sampling design p. The following lemma depicts some relations among
inclusion-probabilities and expected effective sample size of a sampling design.

Lemma 1.2.1: For any sampling design p,

(i)
m; +mj — 1 < m; < min(m;, 7))

(i) .

S m= Y u(e)nls) = v

i=1 s€S
(iii) N

> 3wy = vl - 1)+ Viss))
itj=1
If P € pn,
(i) .
Z Ti; = (V o 1)7ri
J(#i)=1

(v)

N
Z Z i =V(V— 1).

i#j=1
Result (i) is obvious. Results (ii), (iii) and (iv), (v) are, respectively, due to Godambe
(1955), Hanurav (1962), Yates and Grundy (1953).

Further, for any sampling design p,
6(1-6) < V{v(s)} < (N —v)(v - 1) (1.2.9)

where v = 1] +6,0 < 6 < 1,0 being the fractional part of v. The lower bound in (1.2.9)
is attained by a sampling design for which

Ply(S)=[v]]=1-0 and Pv(S)=v+1]=6.

Mukhopadhyay (1975) derived a sampling design with fixed nominal sample size n(>
v),[p(S) > 0 = n(S) = n VS such that V{v(S)} = 6(1 — 6/(n — [v]), which is very
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close to the lower bound in (1.2.9). Here, n(S) is the nominal sample size (number of
draws in) S.

We shall denote by
pr(ir) = probability of selecting i, at the rth draw

pr(ir|i1,...,ir—1) = conditional probability of selecting i, at the rth draw given that
i1,...,ir—1 are selected at the first, ..., (r — 1)th draws respectively.

Suppose the values zj,...,zy of a closely related (to y ) auxiliary variable z on units
1,2,..., N respectively, are available. As an example, in an agricultural survey, x may
be the area of a plot under a specified crop and y the yield of crop on that plot. The
quantities p; = z;/ X, X = Zﬁl x; is called the size-measure of unit i(=1,...,N) and
is often used in selection of samples.

1.3 Different Types of Sampling Designs

Sampling designs proposed in the literature can be generally grouped in the following
categories:

(a) Simple random sampling with replacement (srswr)
(b) Simple random sampling without replacement (srswor)

(c) Probability proportional to size with replacement (ppswr) sampling: a unit 7 is
selected with probability p; at the rth draw and a unit once selected is returned
to the population before the next draw (r =1,2,...).

(d) Unequal probability without replacement (upwor) sampling: A unit 7 is selected
at the rth draw with probability proportional to p,(-r) and a unit once selected is
removed from the population. Here

p1(i) = pﬁl)

piy
L — ) _ 0 _ I

Py, —Pi, —--TD;,,

gl =

r=1,2,...,n. (1.3.1)

The quantities {pf-r)} are generally functions of p; and the p;-values of the units

already selected. In particular, if pl(r) =p; Vi=1,...,N, the procedure may
be called probability proportional to size without replacement (ppswor) sampling
procedure. For n = 2, for this procedure

Pi}

o L 8 A
™ = Pil 1—p;
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N
1 1 Pk
mi; = pipj|[—— + ——], where A = —_—
The sampling design may also be attained by an inverse sampling procedure where
units are drawn wr, with probability pl(r) at the rth draw, until for the first time
n distinct units occur. The n distinct units each taken only once constitute the
sample.

(e) Rejective sampling: Drwas are made wr and with probability {pgr)} at the rth
draw. If all the units turn out distinct, the solution is taken as a sample; otherwise,
the whole sample is rejected and fresh dras are made. In some situations p(r) =

1
Di V1.
(f) Systematic sampling with varying probability (including equal probability).

(g) Sampling from groups: The population is divided into L groups either at random
or following some suitable procedures and a sample of size nj, is drwan from the hth
group by using any of the above-mentioned sampling dsigns such that the desired
sample size n = Y F_, ny, is attained. An example is the Rao-Hartley-Cochran
(1962) sampling procedure.

Based on the above methods, there are many uni-stage or multi-stage stratified sampling
procedures.

A FES(n)-sampling design with m; proportional to p; is often used for estimating a
population total. This is, because an important estimator, the Horviyz-Thompson esti-
mator (HTE) has zero variance if y; is proportional to p;. Such a design is called a 7ps
design or IPPS (inclusion-probability proportional to size) design. Since m; < 1, it is
required that z; < X/n V ¢ for such a design.

Many (exceeding sixty) unequal probability without replacement sampling designs have
been suggested in the literature, mostly for use along with the HTE. For many of
these designs sample size is a variable.” Again, some of these designs are sequential in
nature (e.g., Chao (1982), Sunter (1977)). Mukhopadhyay (1972), Sinha (1973), Herzel
(1986) considered the problem of realizing a sampling design with pre-assigned sets of
inclusion-probabilities of first two orders.

In a sample survey, all the possible samples are not generally equally preferable from
the view-point of practical advantages. In agricultural surveys, for example, the inves-
tigators tend to avoid grids which are located further away from the cell camps, are
located in marshy land, inaccessible places, etc. In such cases, the sampler would like to
use only a fraction of totality of all possible samples, allotting only a small probability
to the non-preferred units. Such designs are called Controlled Sampling Designs and
have been considered by several authors (e.g., Chakravorty (1963), Srivastava and Saleh
(1985), Rao and Nigam (1989, 1990), Mukhopadhyay and Vijayan (1996)).



