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Preface

“Though of real knowledge there be little, yet
of books there are plenty”
-Herman Melville, Moby Dick, Chapter XXXI.

The treatment of integration developed by the French mathematician
Henri Lebesgue (1875-1944) almost a century ago has proved to be in-
dispensable in many areas of mathematics. Lebesgue’s theory is of such
extreme importance because on the one hand it has rendered previous
theories of integration virtually obsolete, and on the other hand it has
not been replaced with a significantly different, better theory. Most sub-
sequent important investigations of integration theory have extended or
illuminated Lebesgue’s work.

In fact, as is so often the case in a new field of mathematics, many
of the best consequences were given by the originator. For example,
Lebesgue’s dominated convergence theorem, Lebesgue’s increasing con-
vergence theorem, the theory of the Lebesgue function of the Cantor
ternary set, and Lebesgue’s theory of differentiation of indefinite inte-
grals.

Naturally, many splendid textbooks have been produced in this area.
I shall list some of these below. They are quite varied in their approach
to the subject. My aims in the present book are as follows.

1. To present a slow introduction to Lebesgue integration.
Most books nowadays take the opposite tack. I have no argument with
their approach, except that I feel that many students who see only a
very rapid approach tend to lack strong intuition about measure and
integration. That is why I have made Chapter 2, “Lebesgue measure on
R™,” so lengthy and have restricted it to Euclidean space, and why I have
(somewhat inconveniently) placed Chapter 3, “Invariance of Lebesgue
measure,” before Fubini’s theorem. In my approach I have omitted
much important material, for the sake of concreteness. As the title of
the book signifies, I restrict attention almost entirely to Euclidean space.

2. To deal with n-dimensional spaces from the outset. I believe
this is preferable to one standard approach to the theory which first
thoroughly treats integration on the real line and then generalizes. There
are several reasons for this belief. One is quite simply that significant
figures are frequently easier to sketch in R? than in R!! Another is
that some things in R! are so special that the generalization to R™ is
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not clear; for example, the structure of the most general open set in
R! is essentially trivial — it must be a disjoint union of open intervals
(see Problem 2.6). A third is that coping with the n-dimensional case
from the outset causes the learner to realize that it is not significantly
more difficult than the one-dimensional case as far as many aspects of
integration are concerned.

3. To provide a thorough treatment of Fourier analysis. One of
the triumphs of Lebesgue integration is the fact that it provides definitive
answers to many questions of Fourier analysis. I feel that without a
thorough study of this topic the student is simply not well educated
in integration theory. Chapter 13 is a very long one on the Fourier
transform in several variables, and Chapter 14 also a very long one on
Fourier series in one variable.

4. To prepare students to become “workers” in real analysis.
I do not mean that they should become researchers, but instead that
they be able to apply to other areas of interest to them the things they
have seen in this book. As a certain sort of analyst myself, I have chosen
to include those topics which I have found to be of primary importance
in my own research. This purpose partially explains the inclusion of the
two long Chapters 15 and 16 on differentiation theory. They are also
here because of their beauty and depth.

This last aim seems to be ever growing in its importance, as we math-
ematicians are seeing more and more students from other disciplines
taking our advanced courses. It is now commonplace to find engineer-
ing graduate students, for example, taking courses in integration theory,
differential geometry, etc.

I have written this book under the assumption that the student either
is already familiar with certain basic concepts or has a teacher. Thus,
the introductory chapter on the basic facts about R™ is extremely brief,
except that I have tried to give a fairly careful account of compactness
(in R*). (I have done so because compactness is a serious stumbling
block for many students.)

I confess that I am proud of the problems in this book. There are
600 of them, and I think most of them are interesting and neither trivial
nor impossibly difficult. There are a few that are “challenging,” and
this is another reason for the utility of having a teacher. I have chosen
to spread the problems throughout the text, in order to encourage the
students and teacher to use them as an integral part of their study. Thus,
when a problem appears as a subject is being developed, the indication
to the students is that they are now ready for this exercise to check
their knowledge and to strengthen their understanding of what is being
discussed.
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*x Walter Rudin, Real and Complex Analysis, third edition, McGraw-
Hill, 1987.

* Herbert Federer, Geometric Measure Theory, Springer-Verlag, 1969.
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1ntroduction
to R"

A. Sets

The real number system will be denoted R. We shall be working on
R™, the set of ordered n-tuples of real numbers, and shall use a notation
such as z for points in R*: z = (z1,...,%,). If n = 1 we shall simply
write x instead of z; and if n = 2 we shall frequently use the notation
(z,y) instead of (z1,x2).

In general there is a notion of Cartesian product: If Ay, As, ..., AN
are sets, then

A1XA2X--~XAN

is the set of all ordered N-tuples (a1, a2,...,an) with ax € Ag for k =
1, 2, ..., N. In particular, R = R x --- x R (n factors). We shall
not hesitate to write the equality R! x R™ = R*™ although, strictly
speaking, these two sets are not equal.

Given a set A contained in R™, the complement of A is the set

A= {z eR" |z ¢ A}.

Let 0 denote the empty set. Then (R")¢ = () and (¢ = R™. It is always
true that A = A.

If A and B are sets, and if every member of A is also a member of B,
then we say that A is contained in B, and we write A C B. We also
write B D A. Since two sets are equal if and only if they have the same
members, a proof that A = B frequently follows the pattern of provmg
that A C B and also that B C A.

If A and B are sets in R", the union of A and B is the set

AUB={zeR"'|z€A or z€ B},
and the intersection of A and B is the set
ANB={zeR"|z€ A and z€ B}.

The sets A ‘and B are said to be disjoint if AN B = 0.
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The difference A ~ B is the set
A~B=AnNB".

Now we shall generalize the notions of union and intersection to ar-
bitrary collections of sets. To do this, let the symbol Z stand for an
arbitrary set used for indexing. The indices will be denoted by the letter
i. Suppose that for each ¢ € T there corresponds a set A;. Then the
union of these sets is the set

U A; = {z | there exists i € T such that z € A;},
i€l
and the intersection is the set

nA,-={z|foreveryieI, T € A;}.
i€T

We could also denote the union as U{A; | € 7} and the intersection as
N{A;|i eI}

We say the sets are disjoint if i #1' = A; N Ay = 0.

The system of natural numbers will be denoted N = {1,2,3,...}. In
case the index set is N, we shall usually write

oo oo
JAx and () 4k
k=1 k=1

for the union and intersection, respectively.




