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Preface

The 9/11 attack on US soil has inadvertently heightened the need for our
preparedness in other potential means of terrorist attack. In particular, both
biological and chemical warfare have been at the top of the priority list of most
governmental agencies as reagents can be covertly prepared and disseminated
to result in both widespread fear and casualties. Among many others, one
primary preventive step in preparing for the above attacks is to establish a
network for efficient surveillance and rapid detection such that appropriate
response to such attacks can be timely and effective.

Over the years, primarily due to technological advances, both chemical and
biological agents that are able to inflict mass destructions have become more
diverse and complex. Subsequently, improvement of sensing devices for rapid
and sensitive detection should also be made to keep pace with these engineered
or emerging threat agents. Advances in micro- and nanofabrication techniques
to enable sensing devices are especially of interest as they have been shown to
offer desired advantages such as improved and enhanced functionality,
increased efficiency and speed in their readout, reduction in their fabrication
cost, and also reduced reagent consumption. Indeed, numerous innovative and
exciting reports which took advantage of the above-mentioned techniques for
both chemical and biological sensing have appeared over the last decade. While
it is not the intention of this book to detail each reported approach, the aim is
to compile in depth several detection schematics such that the reader can be
provided with a general sense of these micro- and nanoscale sensing systems
and platforms.

In this book, I have assembled a series of chapters detailing both well-
established and “next-generation” micro- and nanoscale sensors and/or sensing
platforms. Briefly, these sensors or sensing platforms range from the novel
utilization of nanotubes, cantilevers, nano- and/or microsized pores and engi-
neered whole cells to polymeric transistors efc. for sensing purposes. It is truly
gratifying to see a synergistic marriage of myriad techniques, ranging from
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vi Preface

chemical, engineering and biological, for the development of sensors, which
was once traditionally thought to be reserved for immunologists. The enabling
of the above technologies should soon result in a much improved sensing
network for the detection and surveillance of both chemical and biological
warfare agents.

Lastly, I thank the various members in my research group, namely Hansang
Cho, Nick Fischer, Eric Schopf and Aaron Rowe, for their help in the com-
pletion of this book project.

Jeffrey B.-H. Tok
Livermore, California
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CHAPTER 1

Carbon-Nanotube-Network
Sensors

ERIC S. SNOW

Institute for Nanoscience, Naval Research Laboratory, Washington,
DC 20375, USA

1.1 Introduction

The growing threat of chemical, biological and radiological attack has created a
demand for sensors that are capable of monitoring a large number of facilities
for the preemptive detection or potential release of toxic agents. Such appli-
cations are highly demanding, requiring inexpensive sensors that are extremely
sensitive while producing a low incidence of false alarms. Many such applica-
tions are beyond the capability of current technology, which has motivated the
development of improved chemical and biological sensors.

Nanomaterials, because of their intrinsically high surface-to-volume ratio, offer
the potential to advance the state of the art by serving as the active material for
chemical, biological, radiological and explosive sensors. Among such nanomaterials
single-walled carbon nanotubes (SWNTs) possess a number of intrinsic properties
that make them particularly well suited for a wide range of sensor applications.
SWNTs are single-atomic sheets of graphite rolled into a cylinder ~ 1 nm in dia-
meter that can range in length from 10s of nanometers to 100s of microns
depending on the method of growth and preparation.' > Because SWNTSs are
composed entirely of surface atoms, molecular adsorbates can significantly perturb
their electronic properties.*> SWNTs also exhibit near-ballistic electron transport
along the tube axis,® which provides a highquality electrical conduit for the trans-
mission of such electrical perturbations to external contacts. Finally, the graphitic
surface of SWNTSs is chemically robust, enabling long-term stable operation.
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2 Chapter 1

Initial laboratory results demonstrated the capability for SWNTs to elec-
tronically detect the adsorption of chemical and biological analytes.*”®
However, a number of significant scientific and technological challenges
inhibited the transition of these demonstrations to commercial sensor tech-
nology. These challenges include the development of an inexpensive, high-yield
nanotube device fabrication process, addressing the high level of low-frequency
noise, and achieving analyte specificity. Researchers have made significant
strides at addressing each of these problems enabling the commercialization of
SWNT sensor technology.

In this chapter we examine the current state of development of carbon nano-
tube chemical and biological sensors. Such sensors can take several forms, which
include electrochemical sensors,” '? ionization sensors'® and field-effect transis-
tors (FETs)'*!> with the SWNT FET platform perhaps the most developed of
these. Each of these sensor platforms has its particular set of device physics,
design issues and application areas, and it would be difficult to thoroughly discuss
each of these in a limited space. Consequently, this chapter will focus on the
SWNT FET used for the direct electronic detection of gases, chemical vapors and
biological analytes. This chapter is divided into four sections, which include
sensor design and fabrication, electronic transduction and noise, chemical
vapor and gas detection, and biological detection. These topics cover the main
areas of SWNT-FET-sensor research and development. For the interested
reader, excellent reviews exist in the literature of other nanotube-based sensor
platforms.' 12

1.2 Sensor Design and Fabrication

Initial demonstrations of the sensor properties of SWNTs were performed on
FETs that contained a single SWNT as the conducting channel (see Figure 1.1).*°
In such devices the SWNT was grown or deposited on the surface of a thermal
oxide on a conducting Si substrate. Metal source/drain electrodes formed the
electrical contacts, and the Si substrate served as a back gate. Such devices were
instrumental in investigating the charge-transfer properties of molecular adsor-
bates and in demonstrating the potential of SWNTs for sensor applications.
However, such single-nanotube devices are not easily manufactured, because it is
difficult to precisely position individual SWNTSs, since the variation in SWNT
electronic type (due to diameter and chirality variations®) produces large device-
to-device non-uniformity, and because individual SWNTs produce a high level of
low-frequency noise.'®"® Consequently, factors such as these have impeded the
commercialization of single-SWNT FET sensors.

1.2.1 SWNT Networks

A practical solution to the fabrication problem consists of fabricating field-
effect transistors in which the conducting channel is composed of a SWNT
random network.?® SWNT networks are two-dimensional arrays of randomly
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Figure 1.1 (A) Atomic-force-microscope image of a SWNT FET. Current-voltage
characteristics recorded before and after exposure to NH; (B) and NO,
(C). For (C) the current versus voltage curves were recorded under a gate
bias of +4V. Reproduced with permission from [4]. Copyright 2000
American Association for the Advancement of Science.

positioned SWNTs (Figure 1.2A). If the density of SWNTs in the channel is
sufficient that they highly intersect then the SWNTs form an electrically con-
tinuous film over arbitrarily large dimensions. Sensors formed from such net-
works are inexpensive to manufacture using conventional microfabrication
techniques and exhibit uniform properties that reflect the aggregate properties
of many random, individual SWNTs.?! The networks are typically grown
directly on the thermal oxide of a Si substrate or deposited onto a substrate
from solution. Under the appropriate conditions SWNT networks with sheet
resistances typically between 10 and 1000 kQ/square can be grown or deposited
uniformly across the surface of large-area substrates.”

A key to the electronic properties of SWNT networks is the electrical contact
that is formed between intersecting nanotubes lying on a surface. SWNTs
adhere to surfaces via van der Waals forces.”> Because SWNTSs are extremely
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Figure 1.2 (A) Atomic-force-microscope image of a SWNT network FET.
(B) Simulation of two intersecting SWNTs lying on a surface. The van
der Waals forces acting on the top SWNT are sufficient to deform the
SWNTs at the point of intersection. (B) reproduced with permission from
[23]. Copyright 1998 the American Physical Society.

stiff (Young’s modulus ~ 10'?Pa),>* when two SWNTs cross the van der Waals
force pulling down on the top SWNT is transferred to the point of intersection.
This force is sufficient to deform the two SWNTs forcing them closer together
than the interplane spacing in graphite (see Figure 1.2B).>? This close contact
increases the inter-nanotube tunneling probability, which in the case of two
metallic SWNTs can be as high as 0.1e*/h** (where 4¢%/h is the ideal ballistic
conductance of a SWNT). Metal-semiconductor inter-SWNT contacts result in
a higher resistance caused by the Schottky barrier formed between the two
SWNTSs.?® Such electrical point contacts between intersecting SWNTSs create an
electrically continuous network over arbitrarily large dimensions, provided that
the level of interconnectivity exceeds the percolation threshold for conductivity.
Such films can range from semiconducting to metallic behavior depending on
the density of SWNTs and the device geometry.?*-%¢

It should be noted that recently the Rogers group at the University of Illinois
has demonstrated that highly ordered arrays of SWNTs can be grown on
certain substrates (see Figure 1.3).27-2® If the cost of such ordered arrays can be
kept sufficiently low it may be possible to manufacture sensors with precisely
aligned SWNTs that avoid any deleterious effects of the inter-nanotube con-
tacts present in a network. This approach offers promise for significant
improvement in SWNT-sensor performance.

1.2.2 Sensor Fabrication

Sensors consist of microfabricated metal electrodes deposited on a patterned
SWNT network that is typically formed on the thermal oxide of a conducting Si
substrate.?” The device structure is that of a thin-film transistor with a back
gate that is formed by the Si substrate. A schematic of a sensor is shown in
Figure 1.4. For biosensing the sensor is sometimes submerged in a saline
solution that contains a Pt electrode used as an electrochemical gate.’® SWNT
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Figure 1.3 (a)(c) AFM images of aligned SWNTs grown on single-crystal quartz
substrate using different densities of catalyst particles. (d)—(f) Large-area
SEM images of tubes grown in this fashion. These results indicate a
decreasing degree of alignment with increasing tube density. Reprinted
with permission from [28]. Copyright 2005 John Wiley and Sons, Inc.

Figure 1.4 Schematic of a SWNT network FET sensor. A conducting Si substrate,
separated from the network by a layer of SiO,, serves as a back gate.
Molecular adsorption on the SWNTs is detected as a change in the net-
work conductance and/or the network capacitance. Reprinted with per-
mission from [29]. Copyright 2005 American Chemical Society.

network sensors are simple to fabricate, and the design exposes the surface of
the SWNTSs to the environment for efficient molecular detection.

For both electronic and sensor applications, an important issue is the role
of nanotube/metal contacts. Metal electrodes form a Schottky barrier to



