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PREFACE

This book is a collection of notes of the course of partial differential equations given by
Dr Gustavo Lépez during different periods of time at different Universities. The main body
of this book was put together during a seminar, given by Dr. G. Lépez in collaboration with

M. Murguia and M. Romero at the Physics Institute of the University of Guanajuato, from
August to November of 1988. This collection was made with the help of M. A. Murguia,
M. Romero, E. Benitez, and C. Melo. The final revision was made by Dr. Lépez at the
University of Guadalajara and at Los Alamos National Laboratory (Department of Non
Linear Dynamics) in 1995-1996. I want to point out that without the help and enthusiasm

of M. Murguia, M. Romero and C. Melo., the elaboration of these notes would not have
been possible. I want to thank also to A. Taylor for her collaboration during the revision
of the text.

In this book I try to point out the mathematical importance of Partial Differential
Equations of First Order in Physics and Applied Sciences. The intention is to give to
mathematicians a wide view of the application of this branch in physics, and to give to
physicists and applied scientists a powerful tool for solving some problems appearing in
Classical Mechanics, Quantum Mechanics, Optics, and General Relativity. This books is
intended for senior or first year graduate students in mathematics, physics or engineering
curricula.

Gustavo Lépez

Mathematics is a gift ...
for man to understand the laws
which make up the whole Universe .
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CHAPTERII
Geometric Concepts and Generalities

In this chapter we shall study some geometric concepts that are basic to understand the
geometric meaning of the partial differential equation in R3.

1. Surfaces and Curves in Three Dimensions

By a surface S in R® we mean any relation between the rectangular cartesian coordinates
(z,y, z) of a point in this space given by following expressions

( explicit) z = f(z,vy), (1.1)
( implicit) F(z,y,z) =0, (1.2)
(parametric ) z = fi(u,v),y = fa(u,v),z = f3(u,v) (1.3)

where to each pair of values of u, v there corresponds a set of numbers (z,y, z) and hence
a point in space. While the expression for the surface (1.1) and (1.2) are unique, the

parametric expression (1.3) is not unique. For example, the spherical surface (2% +y%+2% =
a?, see Fig. 1) can be parameterized by

T = asinucosv, Yy =asinusinv, 2z = acosu

or
2av

14w 1+4+v 1+v°

or more general

re gL 9) 1-g(v) . _ 2a+/g(v)

=a cosu, =a——Sslnu, z=
1+g(v) Y MY () 1+g(v)

)

where g(v) is such that 1+ g(v) > 0 for all v € R. By a curve I' in R® we understand any
relation between a point (z,y, z) in this space of the form

( non — parametric ) flz,y,2) =0; g(z,y,2)=0 (1.4)
or
(parametric ) z = fi(t), y= f2(t), z= f3(2) (1.5)



where t is a continuous variable called the parameter of the curve (a usual parameter is
the length of a curve measured from some fixed point). The relation (1.4) expresses in fact
the intersection of two surfaces (see Fig. 2).

Fig. 2

A surface can be thought of as being generated by a set of curves in the following way,
the surface f(x,y,2) = 0 is generated by the set of curves I'; defined by

z=%; f(z,y,k)=0 (1.6)

where k takes a certain interval of values, for example, the sphere (see Fig. 3) can be seen
as generated by the curves I'y given by

z=kK; z2+y2=a2—k2.

Fig. 3

Let a curve I' be parameterized by the length of the curve s, and let
Py = (I(O)v y(0)7 Z(O)) ’
P = (z(s),y(s), 2(s)) ,

and
Q = (z(s +ds),y(s+ ds), z(s + ds))

be three points on I' (see Fig. 4).



If dc is the Euclidean distance between the points P and @, we restrict ourselves to those
kind of curves which satisfy

li s ey 1 L 1.7
fim = G

This means, for example, that we will not be interested in such a curves which turn around
and cross themselves in some point. The direction cosines of the chord PQ are

(z(s +6s) —xz(s) y(s+ds) —y(s) z(s+3ds)— z(s))
dc ’ dc : dc ’

and due to the Taylor’s theorem,
z(s + 8s) — z(s) = ds(dzx/ds) + O(3s?) ,
these direction cosines are reduced to

ds (d::: dy dz

9s faz day az 2
de ds’ds’ds)+o(6$)

as 0s tends to zero. The chord PQ takes up the direction of the tangent to the curve at
P, and according to Eq. (1.7), the direction cosines of this tangent are

dz dy dz
(Ed—d—) (18)

By a curve I' given in parametric form, with s as the parameter, and passing upon a
surface S given by expression (1.2) (cf. Fig. 5), we understand that the following identity

is satisfied
F(z(s),y(s),2(s)) =0 (1.9)

for all the values s in the curve which lies on the surface.

Pig- 4 Fig. 5

If Eq. (1.9) is satisfied for all values of s, then the curve lies completely on the surface. Of
course, if the curve is caused by the intersection of two surfaces, this curve lies completely
on both surfaces. Differentiating Eq. (1.9) with respect to s, we obtain

OF dz  OFdy OF dz

ads -agd—S'FEE:O (110)



From the relations (1.8) and (1.10) we see that the tangent T to the curve I' at any point
P on the surface S is perpendicular to the gradient of F'

OF OF OF
op= (25,25,08). e

and this is true for any curve I' lying on S passing through P, then the vector VF is
normal to the surface S at the point P (see Fig. 6 ).

Fig. 6

If the equation of the surface S is given in the form z = f(z,y), defining p and q as

0z 0z
p—(—?;,and 1= 3, (1.12)

and making F = f(z,y) — z, it follows that F, = p, F, = ¢q, F; = —1 and the unitary
vector 1 normal to the surface at any point is

o 1
n= [p2 +q2 + 1]1/2 (pqu_l) 2 (113)

Let P = (z,y,2) be a point on the surface S defined by F(z,y,z) = 0 and let m; be the
tangent plane at this point, if (X,Y, Z) is any other point on m; then, from the above
discussion, the vector (X — z,Y — y, Z — z) lying on the plane 7}, must be perpendicular
to the normal direction VF at P, so the equation of the tangent plane 7 , (see Fig. 7 ) is

OF OF OF
(X —2)gy + (¥ )5, +(Z -5 =0. (1.14)




Similarly, let S be other surface defined by G(z, v, z) = 0 which intersects the surface
S generating a curve I’ that passes through the point P. The equation for the tangent
plane 7y of this surface at the point P is

. P ST .-
(X —2) G2+ (Y =95 +(2 - 25, =

3y 0, (1.15)

where (X', Y’,Z') is now any other point on this tangent plane 7, (see Fig. 8 ).

Fig. 8

The equation of the line L generated by the intersection o both planes 7; and 7y must
be such that its direction cosines vector (X" —z, Y"” —y, Z" — z), where (X", Y",Z") is
now any other point on the line L, is perpendicular to VF and VG, that is, it must be
parallel to the cross product of VF with VG,

VFXVG:(E;BZ“BZEJ’ Pz0c Dz 0z Goby Dybm

OF 0G 0F0G O0FO0G O0FO0G OF oG BFBG) (1.16)

and therefore is proportional to this vector, establishing the following equations
" " "
X" —z _ Y y _ Z" -z ’ (1.17)
o(F,G) O(F,G) 9(F,G)
d(y,z)  O(z,z)  O(z,y)
where 9(F,G)/8(y, z) is given by

d(F,G) F, E\ _ )
Ay, z) (Gi Gz)‘FyGZ FGy, (1.18)

and so on. Choosing the point on L close enough to (z,v,2), i.e. X" =z +dz,Y" =
y+dy,Z" = z + dz, and given F and G, then (1.17) has the following form

dx - dy _ dz
P(z,y,2) Q(z,y,2) R(z,y,2)’

where P,Q, and R are known functions. The solution of (1.19) gives us the lines with

tangents parallel to the vector field (P(z,v, z), Q(z,y, 2), R(z,y, z)). These integral curves
form a two-parameter family of curves in three dimensional space.

(1.19)



EXAMPLE 1. Give the tangent planes at the point

P= (0,\/\/T’7—1/\/§,(\/ﬁ~1)/2) of the surface 22 +y? + 22 =4 and z = z% +y%

Give their normal vectors and the equation of the tangent line generated by the intersection
of the planes at this point. Give the curve I' generated by the intersection of both surfaces.

In this case
F=z’+y*+22-4

and
G=z*+y*-2z.

VF = (2z,2y,2z), the normal vector of the surface F at P is

e i [0, 2vIT — 272, viT 1] |
VG = (2z,2y, —1), the normal vector of the surface G at P is
I _o/2 _

ng = VAT 12 [O,[2\/ﬁ 2142, 1].

%I;f , %(I:—’gy), and %%2 are given by —2y(1 + 2z),2z(1+4z), and 0. Therefore, at

the point P they have the values —[34(1/17 —1)]*/2, 0, and 0 respectively. The equations
for the planes at the point P are according to Eq. (1.14) and Eq. (1.15)

[2v17T-2]Y2Y + (V1T-1)Z =8,

where Y, Z are coordinates of the plane m; and

VT -9 R Y =~ F = il_? ,

where Y’ Z' are coordinates of the plane my. The equations for the line lying on both
tangent planes which is tangent to the surface at the point P is given, according to (1.17),
by the equations

X" Y - (V1IT-1)/2? 2" - [(V1T—1)/2]'?
—[Ba(VIT-1/2 0 - 0 ?

or writing these equations in parametric way, it follows
X' = —[Ba(VIT-1)¥2 s , Y" = [(VIT-1)/2]"% | Z" = (V1T - 1)/2]"/?
(see Fig. 9).

Fig. 9




The equation of the curve I', which is generated by the intersection of both surfaces and
passes for the point P, is given by

2, 2 V1IT—1

Tzt +y" = 2

EXERCISE 1. Find the tangent planes at the point P = (0, /3, 1) of the surfaces =2 +y2 +

22 =4 and z = 1. Find the normal vectors to these tangent planes at that point, the line
generated by the intersection of these planes, and the curve generated by the intersection
of both surfaces.

2. Method of Solution of dz/P = dy/Q = dz/R

We pointed out in the last section that the integral curves of the set of differential
equations
dr dy dz
P Q R
form a two - parameter family of curves in three dimensional space. Suppose we are able
to derive from Eq. (1.20) two relations of the form

(1.20)

ui(z,y,2z) =1 and up(z,y,z) = cz, (1.21)

where ¢; and ¢, are the constants of integration, then by varying these constants, we obtain
a two - parameter family of curves satisfying the differential equations (1.20).

METHOD (I). Since any tangential direction (dz,dy,dz) at the point (z,y,z) on the
surface u;(z,y, z) = c; satisfies the relation

Ouy ouy Ouy ,

and according with the relations (1.19) we also have

6U1 6u1 Bul _
—(,);-P'F—B;‘Q-i—BZ—R—O. (1.23)

To find u;, we look for functions P’,Q’, and R’ such that
PP+QQ+RR=0, (1.24)

i.e. a vector field E' = (P’,Q’, R') which is perpendicular to E = (P, Q, R) at every point
(z,v, z). Because of Eq. (1.23), this vector field satisfies

a
oz

_0u g O (1.25)

s
e oy’ 0z

QI
Then, with (1.22) we would have that

P'dz + Q'dy + R'dz

is an exact differential, du;. The same procedure can be followed to obtain the other family
of curves us.



EXAMPLE 2. Find the integral curves of the equations
dx dy dz

z(y—z) ylz—z) z2(z-y)

the vector field E is given as

= (z(y — 2),y(z — 2),2(z — v)) .
If we take the vectors fields E' = (1,1,1) and E” = (2y, zz, zy) the condition (1.24) is
satisfied and the functions u;, us of equation (1.25) are

U =c+y+2 U =1TY2

hence, the integral curves of the given differential equations are the members of the two -
parameter family
T+y+z=c, TYZ=C.

We must note that this method depends very much on the intuition and skill in determining
the form of the vectors fields E/, E”.

EXERCISE 2. Find the integral curves of the equations
dx dy dz

zz—y yz—=x 1-2°

METHOD (II). Suppose we find two vectors fields E' = (P’,Q’, R') and
E" = (P”,Q", R") such that the differentials

P'd 'dy + R'd
it = ST Y+ S (1.26)
PP+ QQ + RR
and P'de + Q"dy + R'dz
W = B RR 1 0Q (1.27)
are exact and are equal to each other. Ther, it follows
w =w"+¢ (1.28)

where ¢; is the integration constant.

EXERCISE 3. Let us find the integral curves of the equations
dx dy dz

y+az z+br z4cy

Let us choose the vector E’ of the form E’ = (A, u, ), where A, 1, and v are constants and
find the conditions that they must satisfy in order for the differential form (1.26), given by

1Az + py +vz

) 1.29
pAT + py + vz ( )



to be an exact differential, where p is another constant. From Eq. (1.26), this is possible
only if the determinant of the matrix in the expression

—p b 1 A 0
a 1 —p v 0

is zero, that is if p is a root of the equation

—p*+(a+b+c)p+1+ abc =0.

this equation has three complex roots p;,7 = 1,2,3 and for each of them there exists a

vector
Ai
pi ) =123
Vi

which satisfies Eq. (1.30), and thus we have with Eq. (1.29) three possible exact differen-
tials
dW' = d log(\z + iy + 11 2)V/P,

AW = d log(hox + pg + vaz) /P |

and
dW"" = d log(Asz + 3 + v3z)Y/P .

According to Eq. (1.28), we have the integral curves

Mz + pry + v12)YP = 1Moz + poy + va2) VP2

and
()\11‘ + iy + I/]Z)l/p' = 02(/\311: + psy + V3Z)1/p3 i
TPis lmethod depends also on the intuition in determining the form of the vector fields
E E".
EXERCISE 4. Find the integral curves of the equations

adr bdy cdz
(b—c)yz  (c—a)zz (a—b)zy
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METHOD (III). When one of the variables is absent from one of the equations of
the set (1), it is possible to make a partial separation of variables, and we can derive the
integral curves in a simple way. Suppose that the equation

dy _ds
Q R
can be written in the form
W fw.)
o Y,
this equation has a solution of the form
¢1(y7 Z, C]) — 01

where c¢; is the integration constant. Solving this equation for z (z = ¥(y, ¢1)) and substi-
tuting this value in the equation

dz dy

P Q"
we obtain an ordinary differential equation of the type

dy

T z,y,c
2z = 9@ ya)

whose solution
#2(z,y,c1,c2) =0
may be readily obtained.

EXEMPLE 4. Find the integral curves of the equations

dx dy dz
e (1.31)

Using the first and third terms, we obtained the ordinary differential equation

dzx _
=ze %

==

which has the solution
-z
z=ce €

Substituting this in the second and third term of (1.31), we obtain the ordinary differential
equation

This equation has the two parametric solution

(y+1)e ¥+ cf/e_%_ dz=cy.



