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Synthetic Aperture Radar



PREFACE

Radar, like most well developed areas, has its own vocabulary. Words like
Doppler frequency, pulse compression, mismatched filter, carrier frequency,
in-phase, and quadrature have specific meaning to the radar engineer. In
fact, the word radar is actually an acronym for RAdio Detection And Rang-
ing. Even though these words are well defined, they can act as road blocks
which keep people without a radar background from utilizing the large
amount of data, literature, and expertise within the radar community. This
is unfortunate because the use of digital radar processing techniques has
made possible the analysis of radar signals on many general purpose digi-
tal computers. Of special interest are the surface mapping radars, such as
the Seasat and the shuttle imaging radars, which utilize a technique known
as synthetic aperture radar (SAR) to create high resolution images (pic-
tures). This data appeals to cartographers, agronomists, oceanographers,
and others who want to perform image enhancement, parameter estima-
tion, pattern recognition, and other information extraction techniques on
the radar imagery.

The first chapter presents the basics of radar processing: techniques for
calculating range (distance) by measuring round trip propagation times for
radar pulses. This is the same technique that sightseers use when calculat-
ing the width of a canyon by timing the round trip delay using echoes. In
fact, the corresponding approach in radar is usually called the pulse echo
technique. The second chapter contains an explanation of how to com-
bine one dimensional radar returns into two dimensional images. A specific
technique for creating radar imagery which is known as Synthetic Aperture
Radar (SAR) is presented. Chapter 3 presents an optical interpretation
and implementation of SAR. There are many similarities between SAR, and
other image reconstruction algorithms; a summary of tomography and ul-
trasound techniques is included as Chapter 4. Although the full details of
these techniques are not explained, an intuitive understanding of the phys-
ical properties of these systems is possible from having studied the radar
imaging problem.
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Any type of digital radar processing will involve many techniques used
in the signal processing community. Therefore a summary of the basic the-
orems of digital signal processing is given in Appendix A. The purpose of
including this material is to introduce a consistent notation and to explain
some of the simple tools used when processing radar data. Readers unfamil-
lar with the concepts of linear systems, circular convolution, and discrete
Fourier transforms should skim this Appendix initially and refer to it as
necessary. Matched filters are important in both pulse echo radar and SAR
imaging: Appendices B and C discuss the statistical properties and digital
implementation strategies for matched filters.

The approach in these notes is to present simple cases first, followed
by the generalization. The objective is to get your feet wet, not to drown
in vocabulary, mathematics, or notation. Usually an understanding of the
geometry and physics of the problem will be more important than the math-
ematical details required to present the material. Standard techniques are
derived or justified depending on which approach offers the most insight
into the processing. Of course there are many radar related techniques
which were simplified for presentation or omitted entirely—existing books
and articles containing this information should be within the grasp of read-
ers who studiously complete these notes.

These notes were initiated as part of the documentation for a software-
based radar imaging system at Lawrence Livermore National Laboratory
(LLNL). The code runs on a supercomputer developed in-house under the
S-1 project. Some of the material presented here was also used in a graduate
course at the University of California to introduce particular imaging sys-
tems and techniques. Comments by Lab researchers, faculty, and students
have been helpful and encouraging during preparation of the manuscript.
It is a pleasure to acknowledge my collaborators at LLNL: Steve Azevedo of
the tomography research project and Jim Brase of the non-destructive sig-
nal processing program. Several of the figures in Chapter 4 were produced
through joint efforts. Finally, a note of special appreciation and thanks to
my wife Kathy for her encouragement and assistance with every aspect of
the preparation of this manuscript.
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Chapter 1

Radar Processing

1.1 Radar: A Well Defined Problem

Distance and time are equivalent. But don’t panic, this is not going to
be a discussion about Einstein’s theory of relativity or the use of sundials.
Actually, a simple example in everyday words is sufficient to describe how
time measurements can be used to determine distances. Performing these
types of measurements is the purpose of a radar system.

Suppose you are on a farm which has several open wells. Out of curiosity
you might drop a pebble into one of the wells. After a few moments a
splash or a dull thud is heard. The type of noise heard makes it possible to
determine whether the well is wet or dry. The time from when the pebble
was released until the noise was heard is proportional to the depth of the
well. Obviously the well which has the longest drop to splash time is the
deepest well. If the pebble dropping experiment is performed at each well,
a plot of well depths is accumulated. The results for a six well farm can be
seen in Figure 1.1. Note that the elapsed time, displayed on the horizontal
axis, is sufficient for ranking the depth of any well relative to the other
wells. Additional information would be required to calculate the absolute
depth of any of the wells.

In a radar system the pebble is replaced by an electro-magnetic wave
transmitted from an antenna. Another antenna, or in many cases the same
antenna, serves as the “ear” waiting to hear a “splash”. The splash corre-
sponds to the reflection of the wave off some object in front of the antenna.
By recording what the antenna receives it is possible to determine the rel-
ative position of objects which reflect the wave. A sample radar signal is
given together with its return in Figure 1.2. For this example there are

1
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Figure 1.2: Sample radar reflection.

four reflecting objects or targets. Note that the reflections from two of the
targets overlap to produce an irregularly shaped echo.

The vertical axis is a measure of how strongly the electro-magnetic wave
was reflected off the objects and the horizontal axis displays the elapsed
time from transmission of the pulse to reception. Some objects reflect radar
signals very well and produce strong echoes—similar to the way a mirror
reflects visible light. Because most objects do not reflect radar waves as
efficiently as a mirror reflects light, only a portion of the incident radar
energy is reflected. Because the electro-magnetic illumination is not from
the visible region of the spectrum, the effect of the target on the radar wave
(known as the target’s signature) may not correspond with the human visual
experience.

There are some important differences between the data obtained from
the well experiment and the radar data. The pebble dropping experiment
can be done one well at a time. In radar the number of wells is unknown
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and all the data is taken simultaneously. If two wells are found to have
similar time delays, they would continue to be treated as separate while
evaluating whether they are wet or dry. The format of the graphical dis-
play of Figure 1.1 may need to be changed, but all the information about
every well is still obtained. Suppose the wells are close enough to permit
simultaneously dropping a pebble in every well. Now an experiment which
is similar to radar can be performed with a microphone and tape machine
recording the splashes and thuds. This approach yields the same results
as the sequential stone dropping experiment unless some of the splashes or
thuds overlap during recording. Additional information would be required
to distinguish between two simultaneous small splashes and one big splash.
The problem becomes even more difficult when the possibility of a splash
covering up a thud is considered. A radar antenna illuminating two ob-
jects with approximately the same time delay will create a similar problem.
The reflections off the two objects may add and create a return signal that
appears as one object at that time delay with a larger reflectivity. This
problem is compounded by the random fluctuations in radar signals due
to interfering radiation, atmospheric effects, thermal changes in the elec-
tronic components and other unpredictable degradations of the signal. The
processes which contribute to the degradation from ideal transmission and
reception of the radar signals are called noise. Under anything but ideal
(noiseless) conditions it is impossible to determine the precise number or
nature of objects in the radar return. The corresponding signal is therefore
considered ambiguous—having at least two possible interpretations.

The reason ambiguous signals are received is the overlap of the returning
radar pulse from closely spaced objects. Clearly, making the pulses shorter
in duration, will reduce the ambiguity caused by overlapping reflections.
However, as long as the pulses have some width there will be some mini-
mum time delay between targets which is necessary to have unambiguous
reception. In fact, to guarantee non-overlapping reflections, targets must
be separated in time delay by at least the width of the transmitted pulse.

If the radar’s transmitted pulse duration is 7" seconds, then the time
delay between objects must be at least T' seconds to prevent interference
between the pulse echoes. Because radar waves are a form of electro-
magnetic radiation, they travel at a constant velocity ¢ equal to the speed
of light. This constant has been measured experimentally as approximately
3 x 108m/sec. If the time delay between the reflection off two objects is
T, the light (radar pulse), had to travel an additional c¢r meters for the
farther object. Because cT represents a round trip distance for the pulse,
the actual physical separation of the objects is ¢7/2. For objects separated
by less than ¢T'/2, the reflections will overlap making it difficult to resolve
where one target ends and the other begins. For this reason, ¢T'/2 is usu-
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ally called the range resolution of the radar system. These parameters were
defined graphically in Figure 1.2.

Reducing the duration T of the radar pulse, improves the system’s range
resolution ¢T'/2, which results in the radar being capable of discerning
objects which are closer together. In the well experiment, the reduction
in pulse width might correspond to using smaller pebbles which result in
smaller (quieter and shorter duration) splashes. This creates a new prob-
lem: if the splash becomes too short, it will not create enough sound for
the microphone. For radar signals, the loudness of the splash corresponds
to the energy in the reflected pulse. The farther the targets are from the
antenna the more energy is required in the pulse. Unfortunately it is more
difficult and consequently more expensive to build a radar transmitter and
receiver for a short pulse than for a long pulse of equal energy. What is
needed is a transmitted pulse of sufficient duration to maintain the required
energy levels together with a clever means of receiving and processing this
pulse so that the data can be treated as if it were from a short pulse. In
simpler terms: design a pulse so that overlapping returns from different
time delays can be separated.

Just as the shape and size of the pebbles being dropped in the well can
be controlled, the shape and energy in the transmitted radar light wave can
be controlled. Let u(t) be the function which describes the shape of the
pulse. If the pulse is of length T', then u(t) = 0 fort < 0 and ¢t > T. An
object at time delay 7 will reflect a signal of the form r1(t) = ou(t — 1),
where ¢ is some real-valued! number representing how strongly the object
reflects the transmitted light. A second target might have a reflection of
the form 74(t) = oau(t — 7). Recall that the o’s correspond to the type
of noise the pebble creates (splash or thud) and the 7’s correspond to the
elapsed time from drop to splash. The goal is to design a pulse shape u(t)
such that the returns are dissimilar for objects at different distances from
the radar antenna—that is, when 7 # 7.

One possible measure of the similarity of the two waveforms r; and 7o
is the squared difference d? defined as

d? = /[rl(t) — ro(8)]%dt. (1.1)

Similar signals will have a relatively small squared difference. For example,
the squared difference of a signal with itself is zero. Note that this equa-
tion defines what is meant by similar and dissimilar. There are many other

1In order to completely characterize the reflectivity o of a target, a complex-valued
representation with dependencies on illumination orientation and polarization is neces-
sary. For simplicity, the orientation dependencies of o are not considered in our analysis.
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intuitively satisfying definitions for measuring similarity. For instance, the
squared operator in the integral of Equation 1.1 could be replaced with an
absolute value operator raised to an arbitrary power greater than one. For
the mathematics which follows, however, the squared difference is perhaps
the most convenient definition. Continuing with our design, we want to
maximize the squared difference everywhere 7, does not equal 7,. Expand-
ing d? results in

d2

/ [r1(t) — ro(t))dt
= / [r1u(t — 70) — oau(t — m2)dt (1.2)
o? /[u(t —71)]%dt + o2 /[u(t — 1)]2dt

— 20107 /u(t —7)u(t — m2)dt.

The first two terms which represent the energy in the reflections depend
on u(t) only through its energy [[u(t)]?dt. Because the energy of the pulse
can be controlled by scaling the pulse shape u(t), these energy terms can
be omitted from the optimization. The target reflectances, oy and o, are
functions of the objects observed and cannot be predicted for designing the
pulse shape. The maximization of d? has been reduced to minimizing the
integral

A(r,m) = /u(t — 7)u(t — m)dt (1.3)

for 7 # 72. For 71 = 73, the reflections overlap exactly and represent two
targets at an identical time delay from the antenna. For now we will as-
sume that these types of targets cannot be discriminated and their squared
difference should be large to denote reflection from objects at the same
time delay (distance from the antenna). The transmitted pulse shape u(t)
should therefore be selected to maximize A(ry,72) for 11 = 75 and should
fall off quickly for 71 # m5. This function A(71,72), which is called the
autocorrelation function, equals the energy in u(t) for 7, equal 75.

This analysis shows that in order to have good resolution, the autocor-
relation should be small everywhere except when the time delay between
signals is zero. Note that by a change of variables the autocorrelation can
be written

A(r) = / u(t)u(t + 7)dt (1.4)

where 7 can equal 71 — 75 or 79 — 7;. The limits on the integral would
be over one cycle for periodic signals, all allowed values for finite length
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signals, and the limit of a symmetric average for signals of infinite extent.
Integration determines the area under the product of u(t) with u(t + 7),
where u(t+7) is a shifted version of u(t). A(7), therefore, is the value of the
integral for a particular shift 7. The autocorrelation for several functions
is shown in Figure 1.3. Rectangular pulses are especially helpful when
developing an intuition for the shift and integrate function performed by
the autocorrelation operation.

The correlation operation, which is similar to the autocorrelation, is
used when two different functions are to be compared. For two possibly
complex functions v and v, the correlation is defined mathematically as

C(r) = / u* ()v(t + )t (1.5)

where * is the complex conjugate operation. In order to simplify the math-
ematics, it is often convenient to represent radar signals as complex func-
tions. The correlation of two functions can be considered as a plot of their
average product as one function is slid past the other. An autocorrelation
occurs when one function is used for both inputs to a correlation. Note
that if the waveforms 7, and 75 in Equation 1.2 had not been scaled ver-
sions of the pulse shape u, then the maximization would have been reduced
to minimizing the correlation of 7; with ro. When two signals which are
known to be different are compared using a correlation operation, the out-
put C is often referred to as the cross-correlation. The term correlation
refers generically to the comparison of two arbitrary signals by integrating
the product of the two signals for different relative shifts.

Functions of the form cos[27(ft+ .5at?)] or more generally ef27(ft+.5at?)
compress into very sharp autocorrelations. As an example, consider the
autocorrelation of the complex exponential with phase 2w (ft + .5at?). The
first time derivative of this phase is 27 (f + at), which is the equation for
a line of slope a and initial value f. This first derivative of the phase is
called the frequency of the waveform. The 0.5 coefficient of a in the phase
is used so that the frequency will be a line of slope a. This type of signal is
therefore called a linear frequency modulated (linear fm) signal. The larger
the value of a the faster the frequencies change. Because it is a burst of
different frequencies, the linear fm signal is also called a chirp of rate a.
The autocorrelation of a linear fm signal can be calculated as

A(T) — /e-—j27r(ft+.5at2) ej21r(,f(t-{-1')+.5a(t+'r)Z)dt (16)

- ej2w(_f'r+.5a‘r’)/ej27rart dt
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Figure 1.3: Autocorrelation of several functions.
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In order to evaluate the integral, let the complex exponential be a pulse of
duration T beginning at time Tp. This results in

A(r) = ei2n7[f+a(To+.5T)] Sln[m’;(j;— I7])] for —T <7 <T. (1.7)
a

The initial frequency f + a7y contributes to the autocorrelation as a phase

factor. The shape of the magnitude is determined by @ and T'. The general

shape of the autocorrelation function is perhaps easier to see when it is

rewritten as )

sin[rar(T — |7|)] (1.8)
mat(T — |7])

A =8 (T - Ir)-

where & is the unit magnitude phase contribution e/277lf+a(To+.5T)]  The
(T — |7|) term is a triangle function weighting the sin(z) over z or sinc
function which follows. The width of the main lobe of this function is ap-
proximately 2/aT. This can be seen in Figure 1.3 where the magnitude of
A(7) is plotted or it can be derived by using approximations to solve for the
first zero crossings of the function. Because the function falls off quickly the
time duration of the autocorrelation of this signal is usually considered to
be approximately 1/aT. The spike in the autocorrelation function can be
made narrower by increasing aT". Recall from the original equation for u(t)
that a is the rate frequencies change in the pulse and 7' is the pulse dura-
tion. This means that the product a7, which equals the bandwidth of the
signal, is an indicator of the narrowness of the autocorrelation function.
Signals where the product a7? is large are called large time-bandwidth
functions (7" is the time-duration and aT is the bandwidth). The number
aT? also represents the compression ratio defined as the initial pulse length
T divided by the final pulse width 1/aT". The linear fm chirp was chosen for
this example because it is often selected as the high time-bandwidth func-
tion used as the transmitted waveform in radar systems. The impulse like
shape of the autocorrelation function and the ease of electronically gener-
ating this type of signal both contribute heavily to its popularity. Practical
experience has also shown this pulse shape to be relatively insensitive to
scale changes which occur during echoing. In addition, the chirp demon-
strates the accepted radar axiom that the system range resolution can be
improved by increasing the bandwidth of the transmitted pulse.

Selection of a pulse shape with an autocorrelation function which is
large near zero and falls rapidly implies that returns which partially over-
lap can be separated as reflections from different objects. In fact, the
autocorrelation function not only defines the measure of how similar par-
tially overlapping returns will be, but also provides a method for separating
these reflections. For a pulse shape u(t) and received signal of the form
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Received Signal r(t) Correlation Output y(t)
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Figure 1.4: Detection of pulses using the autocorrelation.

r(t) = ou(t — 7), the receiver that implements a correlation for complex
signals is given by

y(t) = /u*(s) r(s+t)ds = a/u*(s) u(s+t—r)ds=cA(t—1) (1.9)

The output y(¢) of the receiver will be large when ¢ equals 7 and will
be small otherwise—assuming the pulse shape u(t) was selected using the
correlation criteria. This means that the output of this receiver will have
spikes associated with time delays which correspond to reflecting objects.
The transmitted pulse waveform u(t) has been compressed to a spike which
has the shape of its autocorrelation function A(7). An example of a reflected
signal with overlapping returns from targets with equal reflectivity is given
in Figure 1.4. Because the correlation receiver performs a linear operation,
pulses reflected with more energy will result in larger spikes after reception
than spikes resulting from lower energy reflections.

In general, if there are N targets reflecting energy, then there will be N
spikes output from the correlation receiver with each one scaled based on
the reflectivity of the associated target. To summarize, if 7(t) is given by
Zf\;l oiu(t — 7;), then the output of the correlation receiver is

o)) = [u(s)r(s+)ds
Z/u*(s)u(s+t—‘r;)ds

N
= > oiA(t-m)
i=1

The linearity of the correlation operation implies that this receiver can
be expressed as the convolution of the received signal with an impulse



