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Preface

One of the major modern areas of successful practical application of
mathematics is fluid mechanics. This is concerned with analysing the motion of
either liquids or gases. Both of these, of course, are ‘fluids’; that is, they are
mobile substances lacking any large-scale order which are capable, con-
sequently, of unlimited deformation and of yielding in time to any disturbing
force however small.

Study of the mechanics of fluids is important in many contexts such as the
following. .

1 Locomotion through fluid media

All animals live immersed in fluid (air or water) and their capability of motion
through it is of crucial importance for their life style. Man has greatly modified
his life style by devising machines for improved locomotion. A most valuable
flexibility is conferred when locomotion is achieved not by pushing the ground
(as a walker or a train does) but by pushing the fluid (as in animal swimming or
flying, or as in ships or aircraft). Study of all these matters (ranging from
zoology to engineering) involves advanced fluid anics:

2 Circulation systems

processing plant depends just as crucially upon the 1qu1d or gaseous
convection of dissolved chemicals, of suspended particles, or of energy in
circulation systems. The atmosphere is a vast circulation system, driven by the
heat of the sun, and engaged in the transport of heat, water-vapour, oxygen,
carbon dioxide and various pollutants. The ocean is another great circulation
system of practically equal importance to man; who needs to investigate the
mechanics of the fluid motions involved in all of these.

3 Transfer of energy in engines

Energy stored as potential energy, chemical energy or heat energy becomes
converted into kinetic energy in a water turbine, a gas turbine or a steam
turbine, in each case by means of fluid flow acting on rotating blades. Such
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flow is studied in order to improve the efficiency of turbines; which may also, in
many cases, depend upon effective fluid motions for transferring heat quickly
from one part to another in such an engine.

4 Resistance of structures to wind and water

The design of structures intended to resist strong winds, river erosion, or
violent sea motions requires an understanding of what determines the forces
exerted by winds, currents or waves upon stationary structures. Although
these are complex problems, we may note that two of the relatively less
complex problems under headings 1 and 4 here are essentially the same: the
fluid mechanics determining the resistance to a vehicle moving through still
air; and the fluid mechanics determining the force of a steady wind on a
stationary structure. It helps, indeed, to study the former problem from the
standpoint of the moving vehicle: in a frame of reference in which the vehicle
is at rest, the air is blowing past it with equal and opposite velocity, and the
vehicle becomes effectively a stationary structure in a wind.

One of the reasons why the motions of fluids are so complex derives from
the fundamental property that the fluid is capable of unlimited deformation
(unlike solid structures which, in general, are capable of only a very limited
degree of deformation without breaking). Some other reasons for complexity
will be specially studied in this book under the headings of boundary layers and
turbulence.

An essential characteristic of the application of mathematics to systems of
great complexity (like fluids in motion) is that progress can be made only
through an efficient cooperation between theory and experiment. There is a
big contrast here with the study of much simpler systems for which the basic
physical laws are known which allow computer programs to be developed that
will predict reliably the behaviour of the system. Most fluid motions, as we
shall see, are much too complex for that to be possible even if the largest and
fastest of the nineteen-eighties generation of computers is being used.

Great progress with the effective study, and the effective computation, of
fluid motions has been made, however, through the realization that such
progress required creative inputs on a continuing basis both from theory and
from experiment. Even though the basic physical laws underlying the
mechanics of fluids are known with precision, typical problems encountered
under headings 1 to 4 above involve motions of such complexity that the
most powerful computers cannot infer those motions as a straightforward
deductive exercise from those basic physical laws. At the same time,
experiments on the intricate details of particular fluid motions are possible
although they are in general very expensive. How, then, is it possible to make
predictions about the vast majority of fluid motions: those which have not
been subjected to such detailed experimental probing?
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This book seeks to exemplify the answers to that question in an informal,
introductory way. Briefly, those answers are based on the creative use of data
from experimental studies and data from theoretical analyses to generate
practically useful mathematical models (including manageable computer
models) of a wide range of important fluid flows. Some of the analyses, as we
shall see, involve mathematically exciting theories which, incidentally, are of a
strikingly nonlinear character. The book’s prime emphasis, however, is on the
problem of how to use those as strong supports at one end of an effective
bridge spanning the world of mathematics and the world of experiment and
observation.

The illustrative examples given are concerned entirely with water and air,
rather than with more complicated fluids such as blood or the fluids (including
highly viscous fluids) used for various lubrication purposes. They do include
something about circulation systems and about resistance, as well as about the
fluid mechanics that both makes flight possible and underlies the energy
transfer in certain types of turbine. Features special to flows at very high
velocities (significantly greater than 100 m/s) or very low velocities (signifi-
cantly less than 1 m/s) are left out, however, while for matters concerned with
water waves, sound waves, shock waves and the mechanics of stratified fluids,
readers are referred to the present author’s Waves in Fluids (Cambridge
University Press, 1978) which they may find a suitable text for study after they
have read (say) Chapters 1 to 8 of the present work.

London J.L.
July 1985
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1
Principles of mechanics applied
to lumps of fluid

All the analysis in this book is founded upon the basic principles of mechanics,
such as Newton’s laws of motion and the momentum and energy principles.
These principles are assumed to be known, along with the most elementary
physical properties of fluids. The present chapter, however, takes the study of
fluid mechanics only as far as can be achieved by applying the principles of
mechanics to ‘lumps’ of fluid on a large scale.

1.1 Elementary mechanics of a fluid in equilibrium

The word hydrostatics is often used to describe the mechanics of a fluid in
equilibrium; in other words, to describe the statics of a fluid. The elements of
hydrostatics form a simple body of knowledge which is assumed to be known
to the reader, and which is now briefly summarized.

The forces that act on a lump of fluid in equilibrium (Fig. 1) consist of (i) its
weight and (ii) forces acting normal (that is, perpendicular) to its bo_undary.z

\
w

Fig. 1. The forces acting on a lump of fluid in equilibrium consist of its weight W and pressure
forces acting normal to its boundary.

' Rather than by more systematically building up knowledge from their application to very
small ‘particles’ of fluid as in later chapters.
Here is an important difference from a lump of solid material, which can be in equilibrium
under a system of forces including tangential components.
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The magnitude of these latter forces per unit area of boundary is called the
pressure.

At each point in a fluid in equilibrium the pressure has a definite value which
for any lump of fluid with that point on its boundary is the normal force per
unit area acting on that lump. In other words, the pressures acting in every
direction are equal.

Another very well known result, that the pressure is the same at all points of
the fluid which are at the same height, has some quite remarkable con-
sequences. It means that a lump of fluid can be used (Fig.2) to permit a
kilogram weight to balance a tonne if their areas of application are in the ratio
1:1000. This is the principle of the hydraulic press: a device which can have an
almost indefinitely large ‘mechanical advantage’ (ratio of the output force, used
here to support, or perhaps to raise, the tonne weight, to the input force, here
supplied by a weight of one kilogram; or, for raising, slightly more).

Fig. 2. Schematicillustration of the principle of the hydraulic press: the small weight actingona
small area generates the same fluid pressure as the much larger weight acting on a proportionately
larger area.

The balance of forces upon a lump of fluid in equilibrium (Fig. 1) tells us that
the resultant of the normal pressures must be a force equal and opposite to the
weight of the lump. This is Archimedes’ Principle, which for fluid of effectively
uniform density p (that is, with negligible stratification of density), gives the
upward resultant as

pVy, (1)

where Vis the volume of the lump and g is the acceleration due to gravity. This
result applies also if the lump is replaced by a solid lump of the same size and
shape: the distribution of pressures in the fluid is unchanged and they have the
same upward resultant p Vg. In words, the buoyancy force on the body is equal
to the weight of fluid which the body has displaced.
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Finally, Archimedes’ Principle applied to a lump in the form of a cylinder
with vertical generators, which stretches between two levels at heights H; and
H, above some ‘reference level’ (e.g. the ground), tells us that the difference in
the pressures p; and p, at the two levels is

p2—p1 = pg(H, — H), 2

an equation identifying buoyancy force with weight per unit cross-sectional
area of that cylinder. The distribution of pressure in a fluid of uniform density
in equilibrium is, in short, specified by the rule

p+ pgH = constant. 3)

1.2 Flow through a contraction in a horizontal pipe

From elementary statics we now move to how the basic principles of dynamics
can be applied to fluids in motion. The impact of a horizontal jet of fluid, of
density p, velocity v, and cross-sectional area S, on a wall at right angles to the
jet is commonly used in dynamics texts to illustrate the application of the
momentum principle. The jet delivers a mass of fluid p Sv per second, and so the
jet force on the wall is estimated as

pSv?, )

this being the rate of delivery by the jet of horizontal momentum, all of which is
assumed destroyed at the wall.

Even if we are satisfied with relatively crude estimates, however, there are
severe limitations to the range of problems for which such simple consider-
ations of mass and momentum can give useful information. In order to
illustrate this we study the flow of fluid through a gradual contraction
in a horizontal pipe (Fig. 3), and focus attention on a large lump L of fluid

«—R
—> V0t «— J
m S vt~
P1—>
Ls

«<—R

Fig. 3. Flow through a horizontal pipe with a gradual contraction in cross-sectional area from
S, to S,. In time 6t the lump L of fluid moves from a position between the two plain lines at
stations 1 and 2 to a position between the two broken lines. Pressure forces, shown as acting
normally to the pipe wall in the region of the contraction, have the horizontal resultant R which
opposes the net pressure force p; S; —p, S, acting on the lump L at stations 1 and 2.
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stretching from station 1, of cross-sectional area S;, upstream of the
contraction, to station 2, of smaller cross-sectional area S,, downstream of it.

In a small time ¢, the front face of lump L is carried downstream a distance
v, 0t where v, is the fluid velocity at station 2, and the back face is carried
downstream a distance v, 6t where v, is the velocity at station 1. Consequently,
the region occupied by lump L changes, by taking in an additional volume
S,v, 0t at the front and vacating a region of volume S, v, 6t at the back. The rate
of change of mass for lump L consists then of two terms: from the additional
volume a positive contribution pS,v, and from the vacated volume a negative
contribution — p S, v,. As the mass is necessarily conserved we deduce that at
each instant

S1U1 = Szvz, (5)

where both sides of the equation represent the instantaneous rate of volume
flow through the pipe.

We now give particular consideration to a ‘steady-flow’ case, i.e. one in which
the rate of volume flow is not changing with time. Although the volume flow is
constant, eqn (5) shows that v, > v, (as S, < S, ); the fluid speeds up as it enters
the contraction.

What force produces this acceleration? In order to generate such a force it
seems clear that the fluid pressure p, at station 1 must exceed the pressure p, at
station 2, but the amount of that excess is not easily estimated. For example,
consideration of the rate of change of momentum for lump L fails to determine
the pressure drop p; — p, because the horizontal resultant R of the pressure
forces between the pipe and the fluid is unknown (see Fig. 3 where these forces
act at right angles to the boundary so that in the region of the contraction they
must possess components along the axis of the pipe).

The net horizontal force accelerating lump L is p; S; — p, S, — R, consisting
of a pressure force at station 1 opposed by a smaller pressure force at station 2
and by the reaction at the pipe. The corresponding rate of change of
momentum consists of a positive contribution p S,v3 at station 2 (the velocity
v, times the rate of change of mass pS,v, due to lump L moving into an
additional volume at the front) and a negative contribution — pS,v? at station
1 (similarly associated with the volume vacated by lump L at the back; note
that in steady flow the momentum in any fixed region of space remains
constant, so that any change in the momentum of a lump of fluid arises from
changes in the region it occupies). Equating the force to the rate of change of
momentum gives us an equation

Ple—stz—R=P52U%—PSW%’ (6)

but as this equation (to which we return in Section 1.4) includes the unknown

reaction R it fails to give us information about the pressure drop p, —p,.
The way to obtain a useful estimate of that pressure drop is, rather, by

considerations of energy. The rate of change of kinetic energy of lump L
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consists of a positive contribution (3v3)(pS,v,) at station 2 (half the velocity
squared times the rate of change of mass) and a corresponding negative
contribution — (3v?)(pS;v,)at station 1. If we equate this rate of change to the
rate at which external forces do work on the lump L we obtain a positive
contribution (p, S;)v, (force times velocity component in the direction of the
force) at station 1, while the contribution — (p, S, )v, from station 2 is negative
(because the force is in the opposite direction to the velocity). On the other
hand, the pressure forces between the pipe wall and the fluid act at right angles
to the velocity (Fig. 3) and therefore can do no work, so that, on this analysis, the
unknown reaction R makes no contribution.

Equating the rate at which work is done on lump L to its rate of change of
energy, we obtain the equation

P1S1v1 —p2Syv; = (‘}Ug)(l)szvz)—(%U%)(Pslvl) (7

which can be simplified by taking out a factor given by either side of eqn (5) to
give

P1— P2 = 3pv3 —pvi. ®)

This equation for estimating the pressure drop is discussed further, and
critically examined, in the next section.

1.3 The total head of a steady stream

There are several reasons why eqn (8), although often very useful, can at most
be only a rough approximation to the pressure drop which, indeed, it tends to
underestimate. The first of these reasons is very familiar from elementary
mechanics, where energy arguments may produce only crudely approximate
results when they neglect the dissipation of kinetic energy due to friction.

Indeed, frictional forces (that is tangential forces) do occur between a solid
boundary and a moving fluid, even though the well established and experimen-
tally well supported laws of hydrostatics (Section 1.1) rule out such forces for a
fluid at rest. Later, we shall see that the magnitude of any tangential force acting
at the boundary of a lump of fluid that moves in a particular flow pattern
depends on a well defined physical property of the fluid called the viscosity. We
shall find, furthermore, that the fluids upon which this book concentrates (air
and water) are fluids of small viscosity, in a certain well defined sense.

It might be tempting to infer in rather general terms from this that energy
arguments such as were used to derive eqn (8) give results which are good
approximations for air and water. The truth is more complicated, however.
Equation (8) gives results that agree quite reasonably with experiment for the
case actually illustrated in Fig. 3 (a gradual contraction) but gives results that
are very inaccurate for some other pipe geometries, for example an expansion of
cross-section (see Section 1.5), or an abrupt contraction.

Much of the present book is concerned with expounding the intricate
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reasons for these distinctions. They are important not merely because they set
limits on the applicability of a method of calculation but also because (as in
other branches of mechanics) the motions which keep energy dissipation to a
minimum are most advantageous for many engineering applications. In this
section, however, we just briefly initiate that discussion.

Frictional forces can be important not only between a lump of fluid and its
solid boundary (as so far discussed) but also between neighbouring lumps of
fluid. Such internal friction is able to dissipate kinetic energy into heat energy.
Admittedly, the rate of frictional dissipation for a fluid moving in a particular
flow pattern is another quantity proportional to the viscosity of the fluid.
Nevertheless, there are certain pipe geometries which (for reasons that will
emerge later) lead to flow patterns of a type especially prone to dissipate energy
even for fluids of very small viscosities, and this ruins the accuracy of eqn (8).

One further obstacle to the accuracy of the equations of Section 1.2 exists.
Friction tends to produce an uneven distribution of fluid velocities across the
pipe, with the flow retarded more near a solid wall; yet in the arguments leading
to eqn (5), for example, the velocity v, was assumed uniform across the cross-
section (and similarly with v,). Admittedly, a detailed study of those arguments
shows that eqn (5) must remain correct if v, is the fluid velocity at station 1
averaged across the cross-sectional area (and similarly with v,). However, this
interpretation makes for difficulties in eqn (6) which, on a similar basis, would
remain correct only if v] were the fluid velocity squared averaged over the
cross-sectional area. Clearly, this is incompatible with the former determi-
nation of v, since the average of the square of a quantity always exceeds the
square of its average. Similar difficulties arise in eqns (7) and (8).

For certain pipe geometries, however, including that of Fig. 3, typical flows
of water (or of air) in the ranges of speed studied in this book involve velocity
distributions that are almost uniform across the pipe except very near the wall.
In such a case the above difficulties (as well as those others remarked on earlier)
lead to only modest errors.

If the pipe in Fig. 3 is not horizontal, stations 1 and 2 may be at different
heights H, and H, above the ground. In this case, the rate of change of potential
energy due to gravity (gH per unit mass) has to be added on to the right-hand
side of eqn (7), giving an extra term

(gH;)(pS2v2) — (gH1)(pS1v4). &)

When the factor S,v, (or S;v,, which is the same) is taken out of expression (9),

this expression provides an extra term pgH, — pgH; on the right-hand side of
eqn (8), which can then be written

1+ pgH; +%pvi = po+ pgH, +3pv3. (10)

The quantity
p+pgH +%pv?, (11)



