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Preface

This small book is the optics section of the larger textbook called Physics
Programs that covers the four areas, optics, magnetism, solid state/quantum
physics, and applied physics. Each chapter given here is self-contained, with
enough theory given for the topic discussed, and the associated computer
programs, to be well understood. The programs are guaranteed in the sense
that they are copied directly from fully working source texts on the compu-
ter. They can be used, possibly with minor adjustments, on any computing
system. If what is required is a classroom demonstration, or the engagement
of a class in a simple sequence of exercises, then the programs may be used
without understanding the coding. The programs are, however, liberally
strewn with comments so that they can be used for more advanced projects
in which an understanding of the program is required.

The material given here covers ray tracing and lens aberrations,
computer-generated holograms, and a technique currently used in the study
of surface polaritons. It is hoped that this small set of programs will be of
great interest to the many students and teachers of optics. All of these
chapters are suitable for undergraduates at some stage in their studies,
although, of the three, the chapter on holograms is the most sophisticated.

Salford A. D. BOARDMAN
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CHAPTER 1
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gl

Ray Tracing and Lens Aberrations

P. A. Younc

1. INTRODUCTION

A great deal of our knowledge of the physical and biological world comes
from our use of microscopes, telescopes, cameras, and other optical devices
that use light waves to form images of greater brightness or detail than we
can obtain from our eyes alone. A basic part of the design of such optical systems
is the tracing of rays through them and the determination of their deviations
from perfect imagery, the so-called aberrations.

The two concepts that are important in discussing the propagation of light
and the formation of images are the wavefront and the ray. A wavefront is
defined as the locus of points which the light has taken the same time to
reach, and the ray as the direction in which the light energy is travelling. In
isotropic materials, such as glass, the rays are perpendicular to the wave-
fronts.

Because light is a wave-motion it can be diffracted, and the concepts of
ray and wavefront breakdown in situations in which diffraction is important.
These include points at which light waves converge to form images. Diffrac-
tion, in fact, makes it impossible to realize a ray physically, by, for example,
passing light through smaller and smaller pinholes set so as to define a
direction of energy travel; nevertheless, it remains a useful idealization and
it is the propagation of these ideal rays, and associated waves, that is the
province of geometrical optics.

1.1 Fermat’s principle

A fundamental link between the wavefront and the ray is provided by
Fermat’s principle of least time that, in words, is

the path taken by a light ray is such that the time of travel is a minimum.

Subsequent work has shown that, although a minimum is often involved, a
better statement is that the time should be stationary (maximum, minimum,
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or inflexion point): In the notation of the calculus of variations this is written
.as : :

8Idt=0, (1)

where t is the time and the integral is taken between suitable limits. Now if
the speed v of the wave, i.e. ds/dt, and the refractive index n=c/v is
introduced then equation (1) has the form

8jn~ds=0 2)

where ¢, the constant velocity of light in vacuo, has been deleted. The
quantity §n-ds is called the optical path along the ray. For regions of
constant refractive index | n ds is ns which is the familiar rule that

Optical path = refractive index X geometrical path

It follows from Fermat’s principle that light rays obey the observed laws
of geometrical optics,! and in particular for refraction, if a ray (called the
incident ray) in a medium of refractive index n strikes a surface, at an angle
I to the normal, that separates it from a medium of refractive index n’ then
it continues as a refracted ray at an angle I' to the normal such that
(a) the incident ray, the refracted ray, and the normal lie in one plane;
(b) the angles and refractive indices obey Snell’s law, viz.:

nsinI=n'sin I'. 3)

2. RAY TRACING IN THE PARAXIAL APPROXIMATION

It is a consequence of the wave nature of light that just as rays are a physical
impossibility so also is the ideal optical system defined as one in which all
rays leaving a single object point converge on (or appear to diverge from) a
unique image point, and even within the realm of geometrical optics the
quasi-ideal system (ignoring diffraction) can only be realized in a few cases,
of which the plane mirror is the simplest example.”> The situation, however,
is not as bad as it seems because sufficiently close approximations to ideal
systems can be obtained as to be practically useful, and it is the closeness to
ideal imagery that is specified by the aberrations. Furthermore, these may be
determined by ray tracing using the laws of geometrical optics.

However, before any detailed design is carried out to find the exact form
and nature of the deviations from perfect imagery, as revealed by the actual
paths of the rays, it is useful to use what is known as the paraxial or
Gaussian approximation in which all rays are assumed to be close to the axis
of a system and all angles are assumed to be small. These assumptions lead
to the paraxial equations which can be used, for instance, to determine: (1)
the system focal length; (2) the position of the ideal, or Gaussian, image
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from which the deviations can be measured; (3) an estimate of the size of
the aberration of the image as measured by the difference in optical path
between the actual ray and the Gaussian image ray.

Assume that the system has a unique axis of symmetry and that a paraxial
ray is described by the two parameters u and y, as shown in Figure 1a; u is
the angle the ray makes with the axis, and y is the distance from the axis of
a point on the ray, usually at one of the optical surfaces. (Note that for small
u and y, no distinction is made between the position of a ray intercept on a
surface or on its tangent plane.)

RaY

Axis

Figure 1a. Ray parameters

/4 }'J u
J

Surface 1 \ Surface J

Figure 1b. Initial and final ray parameters
Y :
7 r C

Figure 1c. Positive parameters
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Figure 1d. Negative parameters

The tracing of a ray means, as shown in Figure 1b, the determination of
the angle u; and height y, at which the ray leaves the final (Jth) surface of
the system, given the angle u; and height y, at which it enters the first
surface.

The rays are assumed to traverse the system from left to right and the
normal Cartesian conventions on the signs of distances and angles apply.
The radii r of surfaces are positive if they are convex to the left. Figures 1c
and 1d, in which C is the centre of curvature, show situations in which all
the quantities are positive or negative respectively. The procedure for ray
tracing is broken down into two parts, these are refraction at a surface and
transfer from one surface to the next.

2.1 Refraction and transfer

The sth surface AB of radius r, dividing two regions of refractive indices n,
and n{ is shown in Figure 2a. Suppose that a ray makes axial angles u, and

Figure 2a. Refraction
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| d'

S

Figure 2b. Transfer

u’ before and after refraction respectively, and have corresponding angles of
incidence and refraction of i; and i/. Furthermore, suppose that C is the
centre of curvature of the surface and that the incident height y, subtends an
angle of a, at the centre. (It is a consequence of the sign convention on
distances that a, is positive.) Then, from the diagram,

iS = aS + us’

4
it=o,+ul. =

Now for small angles, Snell’s law, equation (3), becomes n'i’= ni so that
ni(a, + uf) = ny(a + u,). (5

Also, for small angles, a, =y,c, where ¢,=1/r, is the curvature of the
surface. (Note that ¢, — 0 when r, — o and can thus be used numerically for
plane surfaces.) Hence, on substituting for «, we find

niu;= nu, — y.K.. (6)
where K|, the power of the surface, is
KS = (n;— nS)CS' (7)

After a ray leaves the surfaces at angle u/ and height y,, it proceeds to the
s+ 1 surface, a distance d} away along the axis, and intercepts it at height
ys+1- In Figure 2b, it is seen, for small angles and heights, that

ys+1= ys+d;u; (8)

2.2 Ray tracing procedure

A given ray is traced through a system by successive use of equations (6) and
(8), noting that at each surface n,.; = n/ and u,,, = u}. The trace is started in
one of two ways:

(1) An initial axial point O on the object, a distance [, from the first
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Figure 2c. Starting with a ray at a given incidence height

From infinity

Figure 2e. Rays from infinity, field angle B
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surface, is chosen together with an incidence height of y; as shown in
Figure 2c. Then

u; = yi/ly, &)

and the trace starts with a refraction.
(2) An object of height h is selected at a distance I, (Figure 2d) and a ray
through the centre of the first surface is chosen, then

}’1=h,

10
ulz_h/lla ( )

and the trace starts with a transfer.

Note that for objects at infinity h and [, simultaneously tend to infinity
but the field angle B = —h,/l, remains constant, as shown in Figure 2e. If a
ray at height y; on the first surface is chosen, then with u; = B, the trace
starts with a refraction.

3. STOPS AND PUPILS

It should be pointed out that the ‘surface’ referred to above can be simply a
circular hole for which n’=n and ¢ =0. Such apertures, or stops, are often
placed in optical systems to limit the extent of the beams passing through,
and also to control the aberrations. Amongst the various stops and lens
apertures in an optical system there will be one, or its image, which seen
from the object side subtends the smallest angle at the axial object point:
this is known as the entrance pupil and it limits the maximum angle that the
rays can make with the axis and still pass through the system.

If the pupil is an image of a stop the corresponding stop is called the
aperture stop, if the pupil is real it is itself the aperture stop. The image of
the entrance pupil as seen from the image side is the exit pupil. For an
off-axis object point the pupil will still, to a large extent, control the angular

Entrance pupil

Principal ray

Figure 3a. Entrance pupil and principal ray for a real pupil
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Aperture stop Entroncelpuprl
|

Principal ray

Figure 3b. Entrance pupil and principal ray for a virtual pupil

aperture of the rays that pass through the system. The ray through the
centre of the entrance pupil, that defines a cone of rays that can pass
through the system, is an important ray and is known as the principal ray.
Figures 3a and 3b show stops, pupils, and principal rays in an optical system;
the principal ray is indicated by double arrows.

4. FOCAL LENGTH

If the initial angle u, is zero and the initial height y, is finite then one can
determine the focal length. After passing through the system the ray will
(except in what are known as telescopic systems) leave the final surface at a
finite angle, u), and height y; and pass through the focal point F'. The point
on the axis directly below the intersection point of the initial ray and the
final ray is the principal point P’, distance p’ from the last surface, whilst the
distance from the last surface to F’ is known as the back focal length, bfl'.

¢,=0.0

Figure 3c. Focal parameters, P', F', p', f’, bfl’
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i

Figure 3d. Gaussian image plane and size for an infinite object

In Figure 3c, it is seen that

focal length: f'=-yi/uj, (11)
back focal length: bfl' = —y,/u}, (12)
position of principal point:  p'= bfl'—f". (13)

If a ray be traced from infinity back through the lens (u;=0) then similar
points F and P and distances f, p, and ffl (front focal length) are defined on
the object side. In systems in which, as is usually the case, n, = n’ the focal
lengths f and f’ are numerically equal and the principal points, P and P’ are
also the so-called nodal points such that a ray directed towards P on the
object side leaves the system on the image side as if directed away from P’.
This is shown in Figure 3d.

4.1 Gaussian image

If the position of the Gaussian, or paraxial, image with respect to the last,

Jth, surface of the system, is gip’ and the size of the image is h’ then

(1) for an object effectively at infinity, as shown in Figure 3d, the image
distance is

gip' = bfl’ (14)

and its size is '
h=FB; 1s)
(2) for an object at a finite distance I, and of size h, the image position is
found by tracing a paraxial ray from the axial object at any non-zero

angle u, and compatible y, = lu,. The image position is then given, as
shown in Figure 3e, by

gip' = y,/uj (16)
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Figure 3e. Gaussian image plane and size for a finite object

The size of the image can be seen, from Figure 3e, to be given by

—h__h
FO PF
so that
h'=—(gip’'— bfl')h/f'. (17)

5. LENS ABERRATIONS

In a perfect optical system all rays leaving a point object, O, converge on (or
diverge from) a point image, O'. If we apply Fermat’s principle to the rays
travelling from the object to the image via the system then any ray takes a
minimum time so that all rays from O to O’ must take the same time; this
fact is more conveniently stated as: the optical path along all the rays from
object to image are equal. A suitable way to measure the defects of any real
optical system is therefore in terms of the differences in the optical paths of

Principal ray: D Marginal ray: D

| 0

Entrance pupil Exit pupil

Figure 4a. Principal ray and marginal ray
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Figure 4b. Wave aberration due to refraction

the rays, which is done by comparing the optical path of any given ray with
that of a reference ray, the latter being chosen as the principal ray. This is
shown in Figure 4a and the conventional choice of a measure W, of the
aberration, is

W=D-D, (18)

where D is the total optical path of the principal ray and D is the total
optical path of the given ray.

5.1 Aberration due to one refraction

In Figure 4b O is an object and O’ is its image in a surface separating media
of refractive indices n and n’. OAQ' is a principal ray and OAQ' is a given
ray that, since it is usually taken to be a ray at the edge or margin of the
pupil, is called a marginal ray. Then

D=n-OA+n'- AO/,

(19)
D=n-0OA+n'- AO/,
and the difference in optical path, defined by equation (18), is
W=n'(AO'- AO")+n(OA - OA)
=n'(AO'- AO')—n(AO- AO)
=A{n(AO-AO)}, (20)

where A means take the difference of the value in the expression after and
before refraction.

5.2 Spherical aberration

The most important aberration, which is present even for axial objects, is
spherical aberration. It is also the one that is most readily calculated from
equation (20). Spherical aberration takes the general form of producing
differing focusing positions for different incident heights, as shown in Figures
5a and 5b. The focus Fg is the Gaussian focus (F’) and is the one that is



