$ 5

MASTER, YOUR
WISH IS MY

©
AUTHENTICATION
> SERVER

= | B - Andrew S. Tanen}

(57) Andrew S. Tanenbaum 3
ML I A d AR A

China Machine Press

TP316. 4
Y3

2 B K B B EN

NHARIERS

(ZR3ZhR)

~ Distributed Operating Systems

(1) Andrew S. Tanenbaum %

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China Machine Press.

Original English language title: Distributed Operating Systems (ISBN 0-13-219908—4) by Andrew S.
Tanenbaum, Copyright © 1995 by Prentice Hall, Inc.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong
SAR and Macau SAR).

AR ENAR HyPearson Education Asia Ltd 328U Tk HARA MR HAK. RBMREBE
WA, AELMEM G R S 2 A BN .

DR T ARICHESEN (ANaFhEEE. BITENTEREAPEEG B) HERT.

A4S E N A Pearson Education (¥A3H HARER) SOCPithR%E, TirEEABHE,

IERURE . @A,
FHERME EFERHRARITRSEAH

EBHENEICS: EF: 01-2006-3114

MBERBE (CIP) ¥R

SARBERGE (FEUR) / (F) KM (Tanenbaum, A. S.) ¥F. —Jb3: HLR Tk H
fR 3, 2006.7

(22 HRRR A5)

F /X Distributed Operating Systems

ISBN 7-111-19347-4

T.gyo D3 W AHRBERG - %X V. TP316.4
h E R A B BIECIPRIRE F (2006) 30625555

PUAE T AR (AEserisse i 77 FE K225 WRBCES 100037)
FtEgmiE: BikE

SR A RRAT DA - FHEBEILRRITHREST
2006457 A8 1R & 1 ENRY

170mm x 242mm - 39.5E|l3k

EMr: 69.007¢

RBAS, mAER. BT, 851, hEdRTHiER
A EHhek: (010) 68326294

BIRE 8918

X LS, R RPHERMPIE SRR S ARBIE,)5 EKEA AR
FHEANGURIE T ZW MY hWERXHNEY, FEEAZBERREBHA
T ZEEAREL. BORAE. EflLOHEEY, EENZ LR SEET FEkRE
FHHEE A, HEHLFR 2 R LA R &SRS E O BRaTe:, dmkmma
ML BP%EE, AER THIRBTEE, CRETFROIEDT, BEBEARE,
XARFHEMNE, KOMEHAZEE AR i woR .

A, ERRERAXR#FHHED T, REMHEI LR EAE, SELA4HE
KHZEY . XX UHEIEFNFMLBRAMERILE, WAKE mELEHEik
EHFRE LBEAERRE. AREGEEARBREEE. Ml A REBHILRT,
EEFREERELTRENBIZRBAILHERBRNSHEM DA FLEBIELE Y
fb. BE, SIE—REESMESE H AL B F 3 3 T B AL 30 F0lk 19 & R A2 B A #E
HEM, hES5HFER. BRAEENHER - RAFHOS4HZE.,

PUBE Tl R pE A B e S fs BAA PR A R R B THE) “HREAKETRS . B1998
FFFAA, BN R TEEARE Ti#%E. BIREMEBEM L. 253 JLENIAH
%75, #A15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ {5t
EHHB A RS T RFBAIERXER, WElIBA ST FEbt Bk H Tanenbaum,
Stroustrup, Kernighan, Jim Gray3% kUi &K f)—#LMELS, UL “HEILBENS
FEMREAR, BHEHEF]) . R RER. KEALENEE, BEAR TXEMNSH
DL R

“UREILBFENS MR TESE TEAIMAZRR DEE, RRNNERA R
e T RIS, ORI T EBIEME RN T RS A ES WY
KEHEMENEMERE, AOEEEARBOTESEF. £4, “HEIEENS
ELHRTEA MM, ILEERATEPH L TREFVOMR, FEFLERREHN
ERBMSERBE, Ad P S5KBITT 7 RLHER.

B 2 PR IR AR P EEMBEM BN BR B, BF R EIMEEYL B 5k
MFLRABP A -, Ak, EEATMASIEBMBODE, &£ “CEHE
MBI Z THREA RGO EILEM: B “THEIBENS” 240, MZERD
B, WRMFRY “@8RFRBE ; RN, SIHLEBTHEZHED
“Schaum’s Outlines” ZRFIHK “@ELHEINRIRIN. A THRIEX=ZEN BB
P, FIRWA T EFHAZRRMEMIIRS, £EARREE rhERFR. sk,
HieR%E. AR R®. EHKR%, LEXBERY. @akE. Ik, PE

iv

HA%¥. BMRELI KRS, AEREARE. PEARKE. ERMEMRKE. R
BREL K%, Ik, MEREBT A%, MM, WLT¥k. PEERELEXS
WIFAER LFENE AKXREFREFILAETHEINEN SR ELFEAR “TXK
HBIERE", ABMHRELEEE R MHREE.

XZEMNBRMEHEE R HOERMNEREAHSE, AERNRERAHENL X
LRI S IT M. KTS8O HAM. L T., Stanford, U.C. Berkeley, C.
M. U. SR 2MAZHEA. AUEETERFRT. SRS, BERE. HEILG
REH. BIEE. WiFFRE. KGETE. BEE. AEENE. EEEEEERANKRE
HEILE LRI IRIZEORE, MASAKE—ANHAEBEESRITEZF. AN
Ba=1tH£MAFE . FHECH2HFO/LEaMmREERM. X 5% H E 04 0m A
FESIZ T, RELREVTEIAENERPHBEERAE.

BERIES . LBO08HM. —KWES. PHROER. Banms, XSEREER
MWEHETREMRIE, BERMNVBEFRERERE, TIRBOENLERBITERX
— &R BN EERE. BHOHBRRERNOEERSOEA . LB TR EIK
AEEXN BTN TERDB RS THIE, BRIOMWBKRRSZHEMT:

B, F#R{F: hzjsj@hzbook.com
BAMBIE: (010) 68995264

BeAMAE: ALRHEIRE E T ERES
MR ZRAG: 100037

R

EREBEE

(¥l =)
I W TR S
2 # WEF
FHE FHFR
R &R
R & S N
71l R LES:T
)

RE

~

£ A
Z &
FiE
Mk &) 2%
EmWE
J& 8
A2 B 3

X £
X &
wAF
R 2
w9
L

WA=

Preface

With the publication of Distributed Operating Systems 1 have now com-
pleted my trilogy on operating systems. The three volumes of this trilogy are:

® Operating Systems: Design and Implementation
¢ Distributed Operating Systems
® Modern Operating Systems

The three volumes are not completely independent, however. For schools hav-
ing a two-course sequence in operating systems (or an undergraduate course plus
a graduate course), one possible choice is to use Operating Systems: Design and
Implementation in the first course and Distributed Operating Systems in the
second one.

The former book treats the standard principles of single-processor systems,
including processes, synchronization, 1/0, deadlocks, memory management, file
systems, security, and so on. It also illustrates these principles in great detail
through the use of MINIX, a UNIX-clone whose source listing is given in an
appendix. MINIX is available on diskette from Prentice Hall for the IBM PC
(8088 and up), Atari, Amiga, Macintosh, and SPARC processors.

The latter book (this one), covers distributed operating systems in detail,
including communication, synchronization, processes, file systems, and memory
management, but this time in the context of distributed systems. Four examples
of distributed systems are given in great detail: Amoeba, Mach, Chorus, and
DCE. Amoeba is available for free to universities for educational use. It runs

viii Preface

on the Intel 386/486, SPARC, and Sun 3 processors. For information on how to
obtain Amoeba please FTP the file amoeballntro.ps.Z from ftp.cs.vu.nl or con-
tact the author by electronic mail at ast@cs.vu.nl. Potential users should be
forewarned that Amoeba is considerably more complex than MINIX: the docu-
mentation alone (available by FTP), runs to well over 1000 pages and the system
requires at least five large machines and an Ethemet to run well.

By studying these two books in sequence and using both MINIX and
Amoeba, students will obtain a thorough knowledge of the principles and prac-
tice of both single-processor and distributed operating systems. Now that the
trilogy is completed, I plan to revise MINIX and the book describing it.

For universities or computer professionals with less time available, Modern
Operating Systems can be thought of as a condensed version of the other two
books. It provides an introduction to the principles of both single-processor and
distributed operating systems, but without the detailed example of MINIX. It
also omits many of the advanced topics present in this book, including an intro-
duction to ATM, fault-tolerant distributed systems, real time distributed systems,
distributed shared memory, Chorus, DCE, and other topics. In all, about 230
pages of material on distributed systems present in this book have been omitted
from Modern Operating Systems.

Many people have helped me with this book. I would especially like to
thank the following people for reading portions of the manuscript and giving me
many useful suggestions for improvement: Irina Athanasiu, Henri Bal, Saniya
Ben Hassen, David Black, John Carter, Randall Dean, Wiebren de Jonge, John
Dugas, Dick Grune, Anoop Gupta, Frans Kaashoek, Marcus Koebler, Hermann
Kopetz, Ed Lazowska, Dan Lenoski, Kai Li, Marc Maathuis, David Mosberger,
Douglas Orr, Craig Partridge, Carlton Pu, Marc Rozier, Rich Salz, Mike
Schroeder, Karsten Schwan, Greg Sharp, Dennis Shasha, Sol Shatz, Jennifer
Steiner, Chuck Thacker, John Turek, Walt Tuvell, Leendert van Doorn, Robbert
van Renesse, Kees Verstoep, Ellen Zegura, Willy Zwaenpoel, and the
anonymous reviewers. My editor, Bill Zobrist, put up with my attempts to get
everything perfect with nary a whimper.

Despite all this help, no doubt some errors remain. That seems to be inevit-
able, no matter how many people read the manuscript. People who wish to
report errors should contact me by electronic mail.

Finally, I would like to thank Suzanne again. After eight books, she knows
the implications of another one, but her patience and love are boundless. I also
want to thank Barbara and Marvin for using their computers and leaving mine
alone (except for the printer). Teaching them how to use PC word processing
programs has made me appreciate troff more than ever. Finally, I would like to
thank Little Bram for being quiet while 1 was writing. '

Andrew S. Tanenbaum

Contents

PREFACE

INTRODUCTION TO DISTRIBUTED SYSTEMS

1.1 WHAT IS A DISTRIBUTED SYSTEM? 2
1.2 GOALS 3 .
1.2.1 Advantages of Distributed Systems over Centralized Systems 3
1.2.2 Advantages of Distributed Systems over Independent PCs 6
1.2.3 Disadvantages of Distributed Systems 6
1.3 HARDWARE CONCEPTS 8
1.3.1 Bus-Based Multiprocessors 10
1.3.2 Switched Multiprocessors 12
1.3.3 Bus-Based Multicomputers 13
1.3.4 Switched Multicomputers 14
1.4 SOFTWARE CONCEPTS 15
1.4.1 Network Operating Systems 16
1.4.2 True Distributed Systems 18
1.4.3 Multiprocessor Timesharing Systems 20
1.5 DESIGN ISSUES 22
1.5.1 Transparency 22
1.5.2 Flexibility 25
1.5.3 Reliability 27
1.5.4 Performance 28
1.5.5 Scalability 29
1.6 SUMMARY 31

vii

x Contents

2 COMMUNICATION IN DISTRIBUTED SYSTEMS

2.1 LAYERED PROTOCOLS 35
2.1.1 The Physical Layer 38
2.1.2 The Data Link Layer 38
2.1.3 The Network Layer 40
2.1.4 The Transport Layer 40
2.1.5 The Session Layer 41
2.1.6 The Presentation Layer 41
2.1.7 The Application Layer 42

2.2 ASYNCHRONOUS TRANSFER MODE NETWORKS 42

2.2.1 What Is Asynchronous Transfer Mode? 42
2.2.2 The ATM Physical Layer 44

2.2.3 The ATM Layer 45

2.2.4 The ATM Adaptation Layer 46

2.2.5 ATM Switching 47

2.2.6 Some Implications of ATM for Distributed Systems 49

2.3 THE CLIENT-SERVER MODEL 50
2.3.1 Clients and Servers 51
2.3.2 An Example Client and Server 52
2.3.3 Addressing 56
2.3.4 Blocking versus Nonblocking Primitives 58
2.3.5 Buffered versus Unbuffered Primitives 61
2.3.6 Reliable versus Unreliable Primitives 63
2.3.7 Implementing the Client-Server Model 65
2.4 REMOTE PROCEDURE CALL 68
2.4.1 Basic RPC Operation 68
2.4.2 Parameter Passing 72
2.4.3 Dynamic Binding 77

2.4.4 RPC Semantics in the Presence of Failures 80

2.4.5 Implementation Issues 84
2.4.6 Problem Areas 95
2.5 GROUP COMMUNICATION 99
2.5.1 Introduction to Group Communication 99
2.5.2 Design Issues 101
2.5.3 Group Communication in ISIS 110
2.6 SUMMARY 114

34

3

SYNCHRONIZATION IN DISTRIBUTED SYSTEMS

3.1 CLOCK SYNCHRONIZATION 119
3.1.1 Logical Clocks 120
3.1.2 Physical Clocks 124
3.1.3 Clock Synchronization Algorithms 127
3.1.4 Use of Synchronized Clocks 132
3.2 MUTUAL EXCLUSION 134
3.2.1 A Centralized Algorithm 134
3.2.2 A Distributed Algorithm 135
3.2.3 A Token Ring Algorithm 138
3.2.4 A Comparison of the Three Algorithms 139
3.3 ELECTION ALGORITHMS 140
3.3.1 The Bully Algorithm 141
3.3.2 ARing Algorithm 143
3.4 ATOMIC TRANSACTIONS 144
3.4.1 Introduction to Atomic Transactions 144
3.4.2 The Transaction Model 145
3.4.3 Implementation 150
3.4.4 Concurrency Control 154
3.5 DEADLOCKS IN DISTRIBUTED SYSTEMS 158
3.5.1 Distributed Deadlock Detection 159
3.5.2 Distributed Deadlock Prevention 163
3.6 SUMMARY 165

PROCESSES AND PROCESSORS IN DISTRIBUTED SYSTEMS

4.1 THREADS 169
4.1.1 Introduction to Threads 170
4.1.2 Thread Usage 171
4.1.3 Design Issues for Threads Packages 174
4.1.4 Implementing a Threads Package 178
4.1.5 Threads and RPC 184
4.2 SYSTEM MODELS 186
4.2.1 The Workstation Model 186
4.2.2 Using Idle Workstations 189
4.2.3 The Processor Pool Model 193
4.2.4 A Hybrid Model 197
4.3 PROCESSOR ALLOCATION 197
4.3.1 Allocation Models 197

Contents xi

118

169

xii Contents

4.3.2 Design Issues for Processor Allocation Algorithms 199
4.3.3 Implementation Issues for Processor Allocation Algorithms 201
4.3.4 Example Processor Allocation Algorithms 203
4.4 SCHEDULING IN DISTRIBUTED SYSTEMS 210
4.5 FAULT TOLERANCE 212
4.5.1 Component Faults 212
4.5.2 System Failures 213
4.5.3 Synchronous versus Asynchronous Systems 214
4.5.4 Use of Redundancy 214
4.5.5 Fault Tolerance Using Active Replication 215
4.5.6 Fault Tolerance Using Primary-Backup 217
4.5.7 Agreement in Faulty Systems 219
4.6 REAL-TIME DISTRIBUTED SYSTEMS 223
4.6.1 What Is a Real-Time System? 223
4.6.2 Design Issues 226
4.6.3 Real-Time Communication 230
4.6.4 Real-Time Scheduling 234
4.7 SUMMARY 240

5 DISTRIBUTED FILE SYSTEMS -

5.1 DISTRIBUTED FILE SYSTEM DESIGN 246
5.1.1 The File Service Interface 246
5.1.2 The Directory Server Interface 248
5.1.3 Semantics of File Sharing 253
5.2 DISTRIBUTED FILE SYSTEM IMPLEMENTATION 256 -
5.2.1 File Usage 256
5.2.2 System Structure 258
5.2.3 Caching 262
5.2.4 Replication 268
5.2.5 An Example: Sun’s Network File System 272
5.2.6 Lessons Learned 278
5.3 TRENDS IN DISTRIBUTED FILE SYSTEMS 279
5.3.1 New Hardware 280
5.3.2 Scalability 282
5.3.3 Wide Area Networking 283
5.3.4 Mobile Users 284
5.3.5 Fault Tolerance 284
5.3.6 Multimedia 285
54 SUMMARY 285

245

Contents xiii

6 DISTRIBUTED SHARED MEMORY 289

6.1 INTRODUCTION 290
6.2 WHAT IS SHARED MEMORY? 292
6.2.1 On-Chip Memory 293
6.2.2 Bus-Based Multiprocessors 293
6.2.3 Ring-Based Multiprocessors 298
6.2.4 Switched Multiprocessors 301
6.2.5 NUMA Multiprocessors 308
6.2.6 Comparison of Shared Memory Systems 312
6.3 CONSISTENCY MODELS 315
6.3.1 Strict Consistency 315
6.3.2 Sequential Consistency 317
6.3.3 Causal Consistency 321
6.3.4 PRAM Consistency and Processor Consistency 322
6.3.5 Weak Consistency 325
6.3.6 Release Consistency 327
6.3.7 Entry Consistency 330
6.3.8 Summary of Consistency Models 331
6.4 PAGE-BASED DISTRIBUTED SHARED MEMORY 333
6.4.1 Basic Design 334
6.4.2 Replication 334
6.4.3 Granularity 336
6.4.4 Achieving Sequential Cofisistency 337
6.4.5 Finding the Owner 339
6.4.6 Finding the Copies 342
6.4.7 Page Replacement 343
6.4.8 Synchronization 344
6.5 SHARED-VARIABLE DISTRIBUTED SHARED MEMORY 345
6.5.1 Munin 346
6.5.2 Midway 353
6.6 OBJECT-BASED DISTRIBUTED SHARED MEMORY 356
6.6.1 Objects 356
6.6.2 Linda 358
6.6.3 Orca 365
6.7 COMPARISON 371
6.8 SUMMARY 372

xiv Contents

7

CASE STUDY 1: AMOEBA

7.1 INTRODUCTION TO AMOEBA 376
7.1.1 History of Amoeba 376
7.1.2 Research Goals 377
7.1.3 The Amoeba System Architecture 378
7.1.4 The Amoeba Microkernel 380
7.1.5 The Amoeba Servers 382
7.2 OBJECTS AND CAPABILITIES IN AMOEBA 384
7.2.1 Capabilities 384
7.2.2 Object Protection 385
7.2.3 Standard Operations 387
7.3 PROCESS MANAGEMENT IN AMOEBA 388
7.3.1 Processes 388
7.3.2 Threads 391
7.4 MEMORY MANAGEMENT IN AMOEBA 392
7.4.1 Segments 392
7.4.2 Mapped Segments 393
7.5 COMMUNICATION IN AMOEBA 393
7.5.1 Remote Procedure Call 394
7.5.2 Group Communication in Amoeba 398
7.5.3 The Fast Local Internet Protocol 407
7.6 THE AMOEBA SERVERS 415
7.6.1 The Bullet Server 415
7.6.2 The Directory Server 420
7.6.3 The Replication Server 425
7.6.4 The Run Server 425
7.6.5 The Boot Server 427
7.6.6 The TCP/IP Server 427
7.6.7 Other Servers 428
7.7 SUMMARY 428

CASE STUDY 2: MACH

8.1 INTRODUCTION TO MACH 431
8.1.1 History of Mach 431
8.1.2 Goals of Mach 433
8.1.3 The Mach Microkernel 433
8.1.4 The Mach BSD uNix Server 435

376

431

8.2 PROCESS MANAGEMENT IN MACH 436
8.2.1 Processes 436
8.2.2 Threads 439
8.2.3 Scheduling 442
8.3 MEMORY MANAGEMENT IN MACH 445
8.3.1 Virtual Memory 446
8.3.2 Memory Sharing 449
8.3.3 External Memory Managers 452
8.3.4 Distributed Shared Memory in Mach 456
8.4 COMMUNICATION IN MACH 457
8.4.1 Ports 457
8.4.2 Sending and Receiving Messages 464
8.4.3 The Network Message Server 469
8.5 UNIX EMULATION IN MACH 471
8.6 SUMMARY 472

CASE STUDY 3: CHORUS

9.1 INTRODUCTION TO CHORUS 475
9.1.1 History of Chorus 476
9.1.2 Goals of Chorus 477
9.1.3 System Structure 478
9.1.4 Kernel Abstractions 479
9.1.5 Kemel Structure 481
9.1.6 The UNIX Subsystem 483
9.1.7 The Object-Oriented Subsystem 483
9.2 PROCESS MANAGEMENT IN CHORUS 483
9.2.1 Processes 484
9.2.2 Threads 485
9.2.3 Scheduling 486
9.2.4 Traps, Exceptions, and Interrupts 487
9.2.5 Kemel Calls for Process Management 488
9.3 MEMORY MANAGEMENT IN CHORUS 490
9.3.1 Regions and Segments 490
9.3.2 Mappers 491
9.3.3 Distributed Shared Memory 492
9.3.4 Kemel Calls for Memory Management 493

Contents xv

475

xvi Contents

9.4 COMMUNICATON IN CHORUS 495
9.4.1 Messages 495
9.4.2 Ports 495
9.4.3 Communication Operations 496
9.4.4 Kernel Calls for Communication 498
9.5 UNIX EMULATION IN CHORUS 499
9.5.1 Structure of a UNIX Process 500
9.5.2 Extensions to UNIX 500
9.5.3 Implementation of UNIX on Chorus 501
9.6 COOL: AN OBJECT-ORIENTED SUBSYSTEM 507
9.6.1 The COOL Architecture 507
9.6.2 The COOL Base Layer 507
9.6.3 The COOL Generic Runtime System 509
9.6.4 The Language Runtime System 509
9.6.5 Implementation of COOL 510
9.7 COMPARISON OF AMOEBA, MACH, AND CHORUS 510
9.7.1 Philosophy 511
9.7.2 Objects 512
9.7.3 Processes 513
9.7.4 Memory Model 514
9.7.5 Communication 515
9.7.6 Servers 516
9.8 SUMMARY 517

10 cask sTupY 4: DCE 520

10.1 INTRODUCTION TO DCE 520
10.1.1 History of DCE 520
10.1.2 Goals of DCE 521
10.1.3 DCE Components 522
10.1.4 Cells 525

10.2 THREADS 527
10.2.1 Introduction to DCE Threads 527
10.2.2 Scheduling 529
10.2.3 Synchronization 530
10.2.4 Thread Calls 531

10.3 REMOTE PROCEDURE CALL 535
10.3.1 Goals of DCE RPC 535
10.3.2 Writing a Client and a Server 536
10.3.3 Binding a Client to a Server 538
10.3.4 Performing an RPC 539

Contents xvii

10.4 TIME SERVICE 540
10.4.1 DTS Time Model 541
10.4.2 DTS Implementation 543
10.5 DIRECTORY SERVICE 544
10.5.1 Names 546
10.5.2 The Cell Directory Service 547
10.5.3 The Global Directory Service 549
10.6 SECURITY SERVICE 554
10.6.1 Security Model 555
10.6.2 Security Components 557
10.6.3 Tickets and Authenticators 558
10.6.4 Authenticated RPC 559
10.6.5 ACLs 562
10.7 DISTRIBUTED FILE SYSTEM 564
10.7.1 DFS Interface 565
10.7.2 DFS Components in the Server Kernel 566
10.7.3 DFS Components in the Client Kernel 569
10.7.4 DFS Components in User Space 571
10.8 SUMMARY 573

11 BIBLIOGRAPHY AND SUGGESTED READINGS 577

11.1 SUGGESTED READINGS 577
11.2 ALPHABETICAL BIBLIOGRAPHY 584

INDEX 603

