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Preface

With the publication of Distributed Operating Systems 1 have now com-
pleted my trilogy on operating systems. The three volumes of this trilogy are:

® Operating Systems: Design and Implementation
¢ Distributed Operating Systems
® Modern Operating Systems

The three volumes are not completely independent, however. For schools hav-
ing a two-course sequence in operating systems (or an undergraduate course plus
a graduate course), one possible choice is to use Operating Systems: Design and
Implementation in the first course and Distributed Operating Systems in the
second one.

The former book treats the standard principles of single-processor systems,
including processes, synchronization, 1/0, deadlocks, memory management, file
systems, security, and so on. It also illustrates these principles in great detail
through the use of MINIX, a UNIX-clone whose source listing is given in an
appendix. MINIX is available on diskette from Prentice Hall for the IBM PC
(8088 and up), Atari, Amiga, Macintosh, and SPARC processors.

The latter book (this one), covers distributed operating systems in detail,
including communication, synchronization, processes, file systems, and memory
management, but this time in the context of distributed systems. Four examples
of distributed systems are given in great detail: Amoeba, Mach, Chorus, and
DCE. Amoeba is available for free to universities for educational use. It runs
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on the Intel 386/486, SPARC, and Sun 3 processors. For information on how to
obtain Amoeba please FTP the file amoeballntro.ps.Z from ftp.cs.vu.nl or con-
tact the author by electronic mail at ast@cs.vu.nl. Potential users should be
forewarned that Amoeba is considerably more complex than MINIX: the docu-
mentation alone (available by FTP), runs to well over 1000 pages and the system
requires at least five large machines and an Ethemet to run well.

By studying these two books in sequence and using both MINIX and
Amoeba, students will obtain a thorough knowledge of the principles and prac-
tice of both single-processor and distributed operating systems. Now that the
trilogy is completed, I plan to revise MINIX and the book describing it.

For universities or computer professionals with less time available, Modern
Operating Systems can be thought of as a condensed version of the other two
books. It provides an introduction to the principles of both single-processor and
distributed operating systems, but without the detailed example of MINIX. It
also omits many of the advanced topics present in this book, including an intro-
duction to ATM, fault-tolerant distributed systems, real time distributed systems,
distributed shared memory, Chorus, DCE, and other topics. In all, about 230
pages of material on distributed systems present in this book have been omitted
from Modern Operating Systems.

Many people have helped me with this book. I would especially like to
thank the following people for reading portions of the manuscript and giving me
many useful suggestions for improvement: Irina Athanasiu, Henri Bal, Saniya
Ben Hassen, David Black, John Carter, Randall Dean, Wiebren de Jonge, John
Dugas, Dick Grune, Anoop Gupta, Frans Kaashoek, Marcus Koebler, Hermann
Kopetz, Ed Lazowska, Dan Lenoski, Kai Li, Marc Maathuis, David Mosberger,
Douglas Orr, Craig Partridge, Carlton Pu, Marc Rozier, Rich Salz, Mike
Schroeder, Karsten Schwan, Greg Sharp, Dennis Shasha, Sol Shatz, Jennifer
Steiner, Chuck Thacker, John Turek, Walt Tuvell, Leendert van Doorn, Robbert
van Renesse, Kees Verstoep, Ellen Zegura, Willy Zwaenpoel, and the
anonymous reviewers. My editor, Bill Zobrist, put up with my attempts to get
everything perfect with nary a whimper.

Despite all this help, no doubt some errors remain. That seems to be inevit-
able, no matter how many people read the manuscript. People who wish to
report errors should contact me by electronic mail.

Finally, I would like to thank Suzanne again. After eight books, she knows
the implications of another one, but her patience and love are boundless. I also
want to thank Barbara and Marvin for using their computers and leaving mine
alone (except for the printer). Teaching them how to use PC word processing
programs has made me appreciate troff more than ever. Finally, I would like to
thank Little Bram for being quiet while 1 was writing. '

Andrew S. Tanenbaum
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