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Preface

These lecture notes are a very free continuati n{ﬁf book #.¢s méthodes
directes en théorie des équations elliptiques™, Prague— I}‘;r@ 17%67 in the non-
linear case. The realization of the existence-regularity schem or nonlinear
systems had to be preceded by the effort of mathe § from the whole
world. Finally, in last years, some new ideas have appeared that enabled us
to present a theory complete in some sense. | underline that I omit completely
the spectral, bifurcation, multiplicity, genericity, and other problems that
belong rather to functional analysis then to the theory of elliptic differential
equations. Nevertheless, in Chapters 3 and 4, which are concerned with the
existence of solution and with approximate methods, many subjects have the
same character. The main part of the lecture notes is Chapters 5 and 6 on the
regularity questions. I added some applications to elasticity, which are far
from being immediate and which show in a large extent some fundamental
questions remaining still open.

A lot of the topics of these lecture notes were discussed in the seminar on
partial differential equations in the Mathematical Institute of the Czecho-
slovak Academy of Sciences and in the lectures that I held at the Faculty of
Mathematics and Physics of the Charles University, at Scuola Normale Su-
periore di Pisa and at the University of Pierre et Marie Curie in Paris.

It is the author’s pleasant duty to thank all his colleagues and friends for
variable discussions: O. A. OLEINIK, S. CAMPANATO, M. GIAQUINTA, P. CIARLET,
G. TRONEL, J. FREHSE, A. KUFNER, J. STARA, O. JoHN, R. Svarc, M. KRBEC,
M. SiLHAVY and P. DRABEK. I also wish to thank K. SEGETH for his help
with the English translation, R. PAcHTOVA for her excellent typing, and the
TEUBNER Publishing House, Leipzig, for their collaboration and patience.

Prague, May 1982 J. NECAS
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Chapter 1

The topic of the lecture notes and
something on modelling by partial
differential equations

1.1. Introduction

The significance of nonlinear elliptic partial differential equations grows up
both from the theoretical point of view and as a consequence of their numer-
ous applications. Taking into account the main results, the classical as well
as the most recent ones, we can affirm that the theory of these equations is
just creating a harmonic entirety where the basic questions are answered. These
lecture notes have been written as an introduction though they are in some
directions complete enough. T will not use the introduction to describe the
history of the development of nonlinear partial differential equations and T
recommend the reader the books by O. A. LADYZENSKAJA, N. N. URALCEVA [1],
CH. B. Morrey [2], J. L. LioNns [3], D. GILBARG, N.S. TRUDINGER [4],
S. Fucik, A. KUFNER [5] and E. GiusTti [6]. We shall touch some historical
features in the sequel.

In these lecture notes, the study of second order systems in the divergence
form
(1.1.1) - 5(1—, [ai(x, u, Vu)] + a"(x, u, Vu) = — gi'
will be in the centre of our interest. Here the summation over the repeated
subscript is understood and

+fr

i

X =(x;, X2, .., X)) ER",  wu=(uy,us,....u,)),
ou, Ou ou
Vu = (Vu,,Vu,, ..., Vu,), Vu,= ( L e ey —n} s
\0x; ’ 0x, 0X,
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One comes to such systems, for example, in the study of the critical points
of the functionals

(1.1.2) fF(x, u, Vu) dx.
Q

Elliptic partial differential equations, together with boundary conditions,
are models for many physical, mechanical, and technical phenomena and we
shall touch such models in these lecture notes in order to clarify that the
construction of modern models as well as the study of these modern models is
considerably neglected as compared with the study of the classical ones where
very subtle results have often nearly nothing in common with the reality. Such

a trivial case is, for example, the functional of the total potential energy of
a membrane

(1.1.3) (D(u)d;ff [T(x) (A/ + 3 (g;‘) - 1)— uf]dx.

i=1
Q2

which is correct only in the case of 7(x) = const because otherwise one does
not obtain the conditions of equilibrium for the momentum, as we shall see
in 1.2. In this case one must study a parametrical ““minimal surface” problem.
Also the usual trick

2/0u \, 1 2 /0u
(19 Sy =1 )
. 3 0 ou .
leads to the Poisson equation — o (Tb_x—) = f the theory of which com-
Xi i

pletely differs from the theory of the equation for the surface with prescribed
1
mean curvature — 7f (if T is constant).

The main questions concerning the systems (1.1.1), if we add some bound-
ary conditions (for example if we prescribe ¥ = / on the boundary 0£2 of the
considered domain Q < R"), are
(i) the existence and uniqueness of the solution: if the uniqueness does not
occur, then the structure of the solutions, generic properties, and the
bifurcation,

(ii) approximate methods for finding the solution,

(iii) the regularity of solution,

(iv) what such systems can model.

In these lecture notes we shall not be concerned with systems of higher
order; roughly speaking, those differ from (1.1.1) by more indices. We shall
make only brief remarks and some references to this topic. In these lecture
notes, we shall be interested both in variational methods and in methods of
mofotone operators. Nowadays, these are the classical results and the reader
can consult also other lecture notes of this series, see S. FUCIK, J. NECAS,
J. SouCek [7] and E. ZEIDLER [8].
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The main point of these lecture notes is the solvability of elliptic systems
and the qualitative behaviour of their solutions. Hence all the functional-
analytic methods are presented from this point of view.

Surveying the historical development of the theory of nonlinear elliptic
equations, we find that one of the fundamental steps was the introduction of
the Sobolev spaces WkP(Q), see S. L. SOBOLEV [9], the development of the
abstract variational methods, see for example M. M. VAINBERG [10], and the
methods of monotone operators, see J. L. Lions [3]. Let us mention that the
fundamentals of those direct methods were given much earlier; if we will not
go back to works of RIEMANN and DIRICHLET we can find them in the book
by R. CouraNT and D. HILBERT [I1]. The works of F. RELLICH, E. TREFFTZ,
S. L. SoBOLEV, S. G. MICHLIN, R. CAccioppoLl, C. MIRANDA, L. SCHWARTZ,
L. GARDING, K. O. FrIEDRICHS, and others have established the fundamentals
of the theory of weak solutions to elliptic equations and this theory was ac-
complished, especially for nonlinear equations, by M. M. VAINBERG, G. MINTY,
J. LEraY, M. 1. VISIX, J. L. Lions, F. E. BROWDER, H. BrREzis and others. The
Sobolev spaces [W1-7(2)]™ are the spaces of vector functions u = (uy, u,, ..., ty)
that are LP-integrable in the considered domain along with their first deriv-
atives.

The solvability of the systems (1.1.1) in [W!?(£2)]" requires some growth
conditions for coefficients, for example

(1.1.5) lai(x, u, Vu)| + |a"(x, u, Vu)| < (1 + |u| + |Vul)?~".

On the other hand, when such systems are models (physical, technical, ...),
the response functions &', a” are defined for # and Vu only in some bounded
regions, and the conditions (1.1.5) are fictitious extrapolations. This incon-
gruity can be eliminated if one considers solutions from [W!-=(£2)]". In general,
it is not known whether such solutions do exist under reasonable conditions.
One can go further and look for solutions in [C'(2)]" or [C**(2)]" and. as
we shall see later, this is just the question (iii), which' is also the focal point of
these lecture notes. There are books or lecture notes on the questions (i), (ii),
and (iv) that are more complete than these lecture notes and the author added
this topic rather because of the integrity of the material presented.

As far as the point (ii) is concerned, it does not surpass a standard treat-
~ment too much. For more details, the reader is recommended to consult the
“book by J. CEA [12]. We look for the steepest descent methods and, also from

this point of view, for the Newton method. In general, this method requires
the C' regularity of solutions, which is not generally known. Surprisingly,
the imbedding method requires practically only weak solutions. (The imbedding
method is, roughly speaking, a continuous analogue of the Newton method.)

The central point (iii) of these lecture notes is the [C*(2)]™ or [C'*(2)]"
regularity of weak solutions. In general under standard assumptions on the
systems (1.1.1) and for a weak solution from [W!-P(Q2)]™ (a solution in the
sense of distributions), there exists a set M, closed in £, of zero measure (more
precisely, see later), and such that the solution is from [C'*(Q\ M)]™. This
is the so-called partial regularity. Under some further assumptions that are
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sufficient and ““necessary”, in principle the same method “of partial regu-
larity” gives that M = 0. This condition is for the interior regularity, i.e. for
proving that a Lipschitz continuous solution to (I.1.1) lies in [C'*(2)]"
(which means that it is Holder continuous on every compact K < £2) denoted
as L(R")—the Liouville-type condition.

For the system (1.1.1) it means:

Vx0 e 2, V& € R™ the solutions v to the system

0

(1.1.6) B,

[@(x°, £, Vo)] = 0

in R" with a bounded gradient |Vuv(x)| < ¢ < oo are polynomials of at most
first degree. It is known that C'-*(£2) regularity holds for the dimension n = 2
and for m = 1, n = 2, and we reprove these results in Chapters 5 and 6. The
regularity of weak solutions to (1.1.1) was proved for n = 2 by CH. B.
MoORREY [13], for m = 1, n = 2 by E. DE GI0ORGI [14], and J. NAsH [14'] and
the condition (1.1.6) was discovered by M. GIAQUINTA, J. NECAS [15]. There
are many important steps in the regularity problem and we removed all the
details to Chapters 5 and 6. Let us mention that we shall suppose the system

(1.1.1) to be very strongly elliptic throughout these lecture notes, i.e. such that
Oar . 2

(1.1.7) I (x, E ) >0 for C# 0.
o}

Also, under this condition, there exists system (1.1.1) with real-analytic coef-

ficients for which the condition (1.1.6) is not satisfied, namely systems with
X% 1

the solution " = o —O0lx|, rs=1,2,....n, for n=3, see
5 n

M. GIAQUINTA, J. NECAS [16].

Nevertheless, we shall close this introduction by an important historical
remark. The regularity problem in words of the analyticity of the extremum
of the functional (1.1.2) with F(x, &, ) analytic was formulated by D. HILBERT
in 1900 as his 19th problem and the way of its solution connected with the
names of S. N. BERNSTEIN, J. LERAY, J. SCHAUDER, H. WEYL and other mathe-
maticians may serve as a beautiful description of the development of mathe-
matics.

1.2. Partial differential equations in modelling

In modelling, one supposes very often that response functions and quantities
to be considered are differentiable enough. On the other hand, the mathe-
matical formulation is often given in terms of generalized solutions. The con-
nection between these two points of view is not, up to this time, clarified
enough.

Less often the formulation corresponds to the mathematical model. It will
be very useful to consider also this way in modelling.
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1.2.1. EXAMPLE. Everybody knows the heat conduction equation. Let us
derive it once again.

Let £2 be the considered body. We suppose that £ is a domain in R3. But
it is more reasonable to consider Q. Is it true that 0f2 is always insignificant?
Let us suppose the 1ime running through the interval. [0, c0). Let u(z, x) be
the temperature of (2 at the point (7, x); let us accept this point of view. Let
D < 2 be a subdomain and let S < 0D. We suppose that the Newton law
for the heat flux is valid: in the time interval [¢,. 7,] the heat flux through S
from 2\ D to D is

{2

(1.2.2) o = fdrfk(\ i Vu)ids

LA
where k(x, u, Vu) is the heat conductivity. One writes (1.2.2) also in the form

(1.2.3) dg = —kﬂd ds.

How many assumptions are hidden in (1.2.3)! Clearly first (1.2.3) must make

sense; then dqg is a sign measure on [t,, 7,] x 0D. Of course, a surface mea-

sure on 0D must be defined. Further (1.2.3) implies that the measure dg has
ou ou

density — km that depends linearly on FP So 0D must be an oriented

surface. On the other hand, k = k(x, u(z, x), Vu(z, x)): the principle of local-

ity ...

The reader sees from these simplest remarks that (1.2.3) is not obvious
and, under some conditions, it can be false. One way continue with the clas-
sical balance of heat flow. The increase of the temperature of the body D
during the time [7,, 7,] needs the heat

(1.2.4) f fg(x) ¢(x, u)%—L; (¢, x) dr dx,

where o is the density and c is the specific heat. (One can make as many re-
marks as before.) If there is a heat source in £, it yields the heat

L5
(1.2.5) j j_/'(t. x) dr dx
1y D
during the time [7,, 7,] in D.
The total heat flux from 2\ D to D is

]
(1.2.6) f fkﬂidrds

on
ty OD
Hence,
i

L5
(1.2.7) ffl\——dtd5+f (fdrdx:ffgcﬁdrdx.
J ot
)

ty oD ty, D
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From Green’s formula we have

15 {2
0 ou . ou ;
(1.2.8) ff(W [ka] +j)dtdx—ffgc¥dtdx,
ty D ty D

we let the reader formulate the assumptions for the validity of (1.2.8). If D
is regularly shrinking to a point x and ¢, = t, #, — 1, then, if the integrand
is continuous, for example, the classical heat-conduction equation follows
from (1.2.8). .

If the temperature approaches a steadyvalue for 1 —» oo, i.e. if u(z, x) - U(x)
in some sense, it may be excepted that

o] ou .
(1.2.9) - [k(x, U, VU)b—xi] = F(x) in Q
and, for example,
(1.2.10) U(x) = H(x) on 0L,
where H is prescribed and F(x) = lim f(¢, x). The classical formula for the
t— 0
Cauchy problem
(1.2.11) (3—1:=Au in Rt ={(t,x)|t> 0},
(1.2.12) u(0, x) = ¢(x):
1 x — y?
(1.2]3) ll(f, x) =erxp(— —I—Tyl) ¢(y) dy

R"

gives that the heat flow has an infinite speed, which is impossible. Where is
the mistake?

1.2.14. EXAMPLE. Let us consider a membrane M and let us suppose
first that it is a surface given in R3, as usually, by

(]215) yl === xl7 .“2 = x", y3 . u(xl, xl)a

where (x, , x,) € 2 = R2. Let us consider first the steady state; let us suppose
that a surface force f3(x;, x,) (in the direction of the axis x;) related to the
unit volume of £ is acting on the membrane. The total work of the surface
forces, if we start from the configuration uy(x,, x,), therefore is

(1.2.16) [ fs(u — up) dx, dx,.

Let us consider a part S of the membrane M the projection of which is O = Q
with 00 smooth enough. Let us suppose that we can define a tension vector ¢
at the points (x;, x,) €00, related to the unit surface of 00, such that
o = o((x,, x,), »), where » is the outer normal to 00 at the point (x;, x,).
We suppose that the vector o lies in the plane tangent to the surface. If we
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2 / 2 v
put p = \/ 1 (O_u) e ( i ) then the unit normal to the surface is

ox, 0x,
u u 1
1207 nz(_A,-#,_).
( ) p p p
Hence
(1.2.18) (n,0) = 0.

If 7 is the tangent vector to 0S at the point y, then we suppose
(1.2.19) (t,0) =0

So we can suppose that the tension vector g(x;, x,) acts on some part of
“0S” the projection of which is I" = 02. The total work of this tension
vector is

(1.2.20) | gs(u — uo) ds.
E

Let us suppose that the total potential energy of tension vectors is
{1.2.21) § T(xy, x2) [p — pol dx, dx;,
Q

which means that the increment d W of the stored energy of the membrane is
proportional to the change of the surface of the membrane. So the functional
of the total potential energy of the membrane (apart from a constant) is
(1.2.22) D(u) = [ (Tp — f>u) dx, dx, — | gsu ds.

o] I

e

Let us consider (formally) the minimum of @(u) over the set of u such that
u=u’onoR2\I' Let u be such a minimum. If # = 0 on 02\ I, it follows
that

(1.2.23) DD(u, h) = "ddT [D(u + th))-o

- f [% (Vu - Vh) — f;h] dx, dx;

Q

— [gshds = 0.
0
If O c O < Q, then it follows in the same manner that
(1.2.24) f [%Vu Vh —f3h] Ay dig — fo3h ds = 0.
o 20

So we get Euler’s equation

(1.2.25) 3‘1—(% OOT”) +f,=0 in®
and
(1.2.26) T o =g; onl,

p on



