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Preface to the Fourth
Edition

C is a powerful, flexible, portable and elegantly structured programming language. Since
C combines the features of high-level language with the elements of the assembler, it is
suitable for both systems and applications programming. It is undoubtedly the most widely
used general-purpose language today.

Since its standardization in 1989, C has undergone a series of changes and improvements
in order to enhance the usefulness of the language. The version that incorporates the new
features is now referred to as C99. The fourth edition of ANSI C has been thoroughly revised
and enlarged not only to incorporate the numerous suggestions received both from teachers
and students across the country but also to highlight the enhancements and new features
added by C99.

Organization of the book

The book starts with an overview of C, which talks about the history of C, basic structure of
C programs and their execution. The second chapter discusses how to declare the constants,
variables and data types. The third chapter describes the built-in operators and how to build
expressions using them. The fourth chapter details the input and output operations. Deci-
sion making and branching is discussed in the fifth chapter, which talks about the if-else,
switch and goto statements. Further, decision making and looping is discussed in Chapter
six, which covers while, do and for loops. Arrays and ordered arrangement of data elements
are important to any programming language and have been covered in chapters seven and
eight. Strings are also covered in Chapter eight. Chapters nine and ten are on functions,
structures and unions. Pointers, perhaps the most difficult part of C to understand, is
covered in Chapter eleven in the most user-friendly manner. Chapters twelve and thirteen
are on file management and dynamic memory allocation respectively. Chapter fourteen deals
with the preprocessor, and finally Chapter 15 is on developing a C program, which provides
an insight on how to proceed with development of a program. The above organization would
help the students in understanding C better if followed appropriately.



Xii % Preface
New to the edition

The content has been revised keeping the updates which have taken placed in the field of C
programming and the present day syllabus needs. As always, the concept of learning by
example’ has been .stressed throughout the book. Each major feature of the language is
treated in depth followed by a complete program example to illustrate its use. The sample
programs are meant to be both simple and educational. Two new projects are added at the
end of the book for students to go through and try on their own.

Each chapter includes a section at the beginning to introduce the topic in a proper per-
spective. It also provides a quick look into the features that are discussed in the chapter.
Wherever necessary, pictorial descriptions of concepts are included to improve clarity and to
facilitate better understanding. Language tips and other special considerations are high-
lighted as notes wherever essential. In order to make the book more user-friendly, we have
incorporated the following key features.

O Codes with comments are provided throughout the book to illustrate how the vari-
ous features of the language are put together to accomplish specified tasks.

O Supplementary information and notes that complement but stand apart from the
general text have been included in boxes.

O Guidelines for developing efficient C programs are given in the last chapter, together
with a list of some common mistakes that a less experienced C programmer could

make. ;

Case studies at the end of the chapters illustrate common ways C features are put

together and also show real-life applications.

The Just Remember section at the end of the chapters lists out helpful hints and

possible problem areas.

Numerous chapter-end questions and exercises provide ample opportunities to the

readers to review the concepts learned and to practice their applications.

Programming projects discussed in the appendix give insight on how to integrate

the various features of C when handling large programs.

O O O O

Supplementary Material

With this revision we have tried to enhance the online learning center too. The supplemen-
tary material would include the following:

For the Instructor

O Solutions to the debugging exercises
For the Student

QO Exclusive project for implementation with code, step-by-step description and user
manual

O Code for the two projects (given in the book)
Q Two mini projects
0O Reading material on C

This book is designed for all those who wish to be C programmers, regardless of their past
knowledge and experience in programming. It explains in a simple and easy-to-understand
style the what, why and how of programming with ANSI C.

E BALAGURUSAMY
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Overview of C

[1.1] HISTORY OF C

‘C’ seems a strange name for a programming language. But this strange sounding language
is one of the most popular computer languages today because it is a structured, high-level,
machine independent language. It allows software developers to develop programs without
worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was
the first computer language to use a block structure. Although it never became popular in
USA, it was widely used in Europe. ALGOL gave the concept of structured programming to
the computer science community. Computer scientists like Corrado Bohm, Guiseppe Jacopini
and Edsger Dijkstra popularized this concept during 1960s. Subsequently, several languages
were announced.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Program-
ming Language) primarily for writing system software. In 1970, Ken Thompson created a
language using many features of BCPL and called it simply B. B was used to create early
versions of UNIX operating system at Bell Laboratories. Both BCPL and B were “typeless”
system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in
1972. C uses many concepts from these languages and added the concept of data types and
other powerful features. Since it was developed along with the UNIX operating system, it is
strongly associated with UNIX. This operating system, which was also developed at Bell
Laboratories, was coded almost entirely in C. UNIX is one of the most popular network
operating systems in use today and the heart of the Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the
release of many C compilers for commercial use and the increasing popularity of UNIX, it
began to gain widespread support among computer professionals. Today, C is running under
a variety of operating system and hardware platforms.

During 1970s, C had evolved into what is now known as “traditional C”. The language
became more popular after publication of the book ‘The C Programming Language’ by Brian
Kerningham and Dennis Ritchie in 1978. The book was so popular that the language came to
be known as “K&R C” among the programming community. The rapid growth of C led to the
development of different versions of the language that were similar but often incompatible.
This posed a serious problem for system developers.



2 I Programming in ANSI C

To assure that the C language remains standard, in 1983, American National Standards
Institute (ANSI) appointed a technical committee to define a standard for C. The committee
approved a version of C in December 1989 which is now known as ANSI C. It was then
approved by the International Standards Organization (ISO) in 1990. This version of C is
also referred to as C89.

During 1990's, C++, a language entirely based on C, underwent a number of
improvements and changes and became an ANSI/ISO approved language in November 1977.
C++ added several new features to C to make it not only a true object-oriented language but
also a more versatile language. During the same period, Sun Microsystems of USA created a
new language Java modelled on C and C++.

All popular computer languages are dynamic in nature. They continue to improve their
power and scope by incorporating new features and C is no exception. Although C++ and
Java were evolved out of C, the standardization committee of C felt that a few features of
C++/Java, if added to C, would enhance the usefulness of the language. The result was the
1999 standard for C. This version is usually referred to as C99. The history and development
of C is illustrated in Fig. 1.1.

1960 ALGOL International Group
1967 BCPL Martin Richards
1970 B Ken Thompson
1972 Traditional C Dennis Ritchie
)
1978 K&R C Kernighan and Ritchie
1989 ANSI C ] ANSI| Committee
y
1990 ANSI/IISO C 1ISO Committee
1999 C99 Standardization Committee

Fig. 1.1 History of ANSI C



. |
Overview of C — 3

Although C99 is an improved version, still many commonly available compilers do not
support all of the new features incorporated in C99. We, therefore, discuss all the new
features added by C99 in an appendix separately so that the readers who are interested can
quickly refer to the new material and use them wherever possible.

[1.2] IMPORTANCE OF C

The increasing popularity of C is probably due to its many desirable qualities. It is a robust
language whose rich set of built-in functions and operators can be used to write any complex
program. The C compiler combines the capabilities of an assembly language with the features
of a high-level language and therefore it is well suited for writing both system software and
business packages. In fact, many of the C compilers available in the market are written in C.

Programs written in C are efficient and fast. This is due to its variety of data types and
powerful operators. It is many times faster than BASIC. For example, a program to
increment a variable from 0 to 15000 takes about one second in C while it takes more than 50
seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in funetions. Sev-
eral standard functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on
another with little or no modification. Portability is important if we plan to use a new
computer with a different operating system.

C language is well suited for structured programming, thus requiring the user to think of
a problem in terms of function modules or blocks. A proper collection of these modules would
make a complete program. This modular structure makes program debugging, testing and
maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a
collection of functions that are supported by the C library. We can continuously add our own
functions to C library. With the availability of a large number of functions, the programming
task becomes simple.

Before discussing specific features of C, we shall look at some sample C programs, and
analyze and understand how they work.

’E SAMPLE PROGRAM I: PRINTING A MESSAGE

Consider a very simple program given in Fig. 1.2.

main( )

{

JEadiie printing begins... *
printf("I see, I remember");

Y L1 printing ends... &t

Fig. 1.2 A program to print one line of text
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This program when executed will produce the following output:
I see, I remember

Let us have a close look at the program. The first line informs the system that the name of
the program is main and the execution begins at this line. The main( ) is a special function
used by the C system to tell the computer where the program starts. Every program must
have exactly one main function. If we use more than one main function, the compiler cannot
understand which one marks the beginning of the program.

The empty pair of parentheses immediately following main indicates that the function
main has no arguments (or parameters). The concept of arguments will be discussed in
detail later when we discuss functions (in Chapter 9).

The opening brace “{ ” in the second line marks the beginning of the function main and
the closing brace “}” in the last line indicates the end of the function. In this case, the closing
brace also marks the end of the program. All the statements between these two braces form
the function body. The function body contains a set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line
is an executable statement. The lines beginning with /* and ending with */ are known as
comment lines. These are used in a program to enhance its readability and understanding.
Comment lines are not executable statements and therefore anything between /* and */ is
ignored by the compiler. In general, a comment can be inserted wherever blank spaces can
occur—at the beginning, middle or end of a line—“but never in the middle of a word .

Although comments can appear anywhere, they cannot be nested in C. That means, we
cannot have comments inside comments. Once the compiler finds an opening token, it
ignores everything until it finds a closing token. The comment line

/*====/*====*/====*/

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we
should use them liberally in our programs. They help the programmers and other users in
understanding the various functions and operations of a program and serve as an aid to
debugging and testing. We shall see the use of comment lines more in the examples that
follow.

Let us now look at the printf( ) function, the only executable statement of the program.

printf("I see, I remember");

printf is a predefined standard C function for printing output. Predefined means that itis a
function that has already been written and compiled, and linked together with our program
at the time of linking. The concepts of compilation and linking are explained later in this
chapter. The printf function causes everything between the starting and the ending
quotation marks to be printed out. In this case, the output will be:

I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a
semicolon (;) mark.
Suppose we want to print the above quotation in two lines as

I see,
I remember!

This can be achieved by adding another printf function as shown below:



