Bl ewucation. K HNHBEINEZHM R @

Programming in ANSI C

Fourth Edition

Bt

(554hR)

E Balagurusamy Z

ATERF Hib L

RFUWENBEESNELEHM AT (FHR)

TP312/Y249=2
2009.

Programming in ANSI C

Fourth Edition

FRAE C EEF &It

(% 4 i)

E Balagurusamy

B KF MR
t X

E Balagurusamy
Programming in ANSI C, Fourth Edition
EISBN: 0-07-064822-0

Copyright © 2009 by The McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All Rights reserved. No part of this
publication may be reproduced or distributed by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

Authorized English language edition jointly published by McGraw-Hill Education (Asia) Co. and Tsinghua
University Press. This edition is authorized for sale only to the educational and training institutions, and within
the territory of the People’s Republic of China (excluding Hong Kong, Macao SAR and Taiwan). Unauthorized
export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal
Penalties.

A F SO EIVAR el 37 K2 Hh R 36 R 32 4 57 - 7 R 0T HA R) 24) 40 R BERROASOURRAE PP AR A
RACAEEARAFESEEE. W TBX K E S) HE BRI 2 at . Revrn]
2O, MABREERGE, BIERZHR.

K& W IRE B BEET, A8LUMER T RE S RA T HATFTH Y .

AP HEME McGraw-Hill 2 BBFHRE, TIRFFEFNSHE.
LRALFERAE, BAULR. BAEEREIE: 010-62782989 13701121933

B M4 B (CIP) ¥4

R C FEFE: % 4 B =Programming in ANSI C, Fourth Edition: €3¢/ CEl) ELHrH BEK
(Balagurusamy, E.) 3. —EIA. —Jbal: WHHERFEHREE, 2009.5

CREFEWSHEE EAE 2 MRS GEEIRRO)
ISBN 978-7-302-19795-9

I. &5 1. B L CEES AR —EEER—#—33 V. TP312
of [H i A B B0 CIP s (2009) 28 045372 5
HIEENH: ZAE

HARAZIT: HHRRF R o bk JERUERREFFETRE A R
http:/ /www.tup.com.cn HiR Y5: 100084
it = #l: 010-62770175 i J: 010-62786544

BEEIFEERS: 010-62776969, c-service@tup. tsinghua. edu. cn

R B & {&: 010-62772015, zhiliang@tup. tsinghua. edu. cn
Jbm S &K ENH R A F

=T A TuEN A A

EEFERE

185 X230 EN3k: 35.25

2009 5 HFE 1R ED WR: 2009 5 HEE 1 IREDRI
1~3000

49.00 JT

APMGELFEARE. WD SR, B0, MR TTERENSERE WS, 1E SIS R R R
. BERHIE: 010-62770177 % 3103 P4 029501-01

Jo=

WD CH NS
EE STk ke ik

th i B W

BEA 21 A, HAREKET. B REGE E RS EM#EA. FK+H0E
SERXAAMTES . A RKEGREROAL, ERGEATESPREMS. BEHE, F
AFEFREBRRAA WEN, DAZIEEEN. BiRESSEEFOEMEREE, AT
INERFECH R SE A, BOE AR IEAE K et B R A A SR AR

TR AL 1996 ETTF R, SEAMEL MRAR G/, BEHRT “KEHHEHL
HAEMNE CGEERD” & RSB, Z2IENEE QYRR BA 21 #Ha, &
MAEARE &SR EMBRIRS VR, E£CHREM L, #—P9 KEBENAE, XK
BEABFFART, —mBRAEIE A X T RKPEER TRE /AR R R AT EIEEN
[E 42 B B 2B, AT R ENBE EAE LB RS CGEERO”, B
Y . IRV R R A RSN B B R M E R BE BAT. EREENERK,
BTN 0 BA TR E ST HALEE LT EM, DFIBRIHE “KEHFENBEHEIES
BRG] GEERD” A EL, EiEa BRI ERTRE,

AR At

About the Author

E Balagurusamy, former Vice Chancellor, Anna University, Chennai, is currently Mem-
ber, Union Public Service Commission, New Delhi. He is a teacher, trainer, and consultant
in the fields of Information Technology and Management. He holds an ME (Hons) in Electri-
cal Engineering and Ph.D. in Systems Engineering from the Indian Institute of Technology,
Roorkee. His areas of interest include Object-Oriented Software Engineering, Electronic
Business, Technology Management, Business Process Re-engineering, and Total Quality
Management.

A prolific writer, he has authored a large number of research papers and several books.
His best selling books, among others, include:

e Programming in C#

e Programming in Java, 3/e

Object-Oriented Programming with C++, 3/e
e Programming in BASIC, 3/e

Numerical Methods

Reliability Engineering

A recipient of numerous honours and awards, he has been listed in the Directory of Who’s
Who of Intellectuals and in the Directory of Distinguished Leaders in Education.

Preface to the Fourth
Edition

C is a powerful, flexible, portable and elegantly structured programming language. Since
C combines the features of high-level language with the elements of the assembler, it is
suitable for both systems and applications programming. It is undoubtedly the most widely
used general-purpose language today.

Since its standardization in 1989, C has undergone a series of changes and improvements
in order to enhance the usefulness of the language. The version that incorporates the new
features is now referred to as C99. The fourth edition of ANSI C has been thoroughly revised
and enlarged not only to incorporate the numerous suggestions received both from teachers
and students across the country but also to highlight the enhancements and new features
added by C99.

Organization of the book

The book starts with an overview of C, which talks about the history of C, basic structure of
C programs and their execution. The second chapter discusses how to declare the constants,
variables and data types. The third chapter describes the built-in operators and how to build
expressions using them. The fourth chapter details the input and output operations. Deci-
sion making and branching is discussed in the fifth chapter, which talks about the if-else,
switch and goto statements. Further, decision making and looping is discussed in Chapter
six, which covers while, do and for loops. Arrays and ordered arrangement of data elements
are important to any programming language and have been covered in chapters seven and
eight. Strings are also covered in Chapter eight. Chapters nine and ten are on functions,
structures and unions. Pointers, perhaps the most difficult part of C to understand, is
covered in Chapter eleven in the most user-friendly manner. Chapters twelve and thirteen
are on file management and dynamic memory allocation respectively. Chapter fourteen deals
with the preprocessor, and finally Chapter 15 is on developing a C program, which provides
an insight on how to proceed with development of a program. The above organization would
help the students in understanding C better if followed appropriately.

Xii % Preface
New to the edition

The content has been revised keeping the updates which have taken placed in the field of C
programming and the present day syllabus needs. As always, the concept of learning by
example’ has been .stressed throughout the book. Each major feature of the language is
treated in depth followed by a complete program example to illustrate its use. The sample
programs are meant to be both simple and educational. Two new projects are added at the
end of the book for students to go through and try on their own.

Each chapter includes a section at the beginning to introduce the topic in a proper per-
spective. It also provides a quick look into the features that are discussed in the chapter.
Wherever necessary, pictorial descriptions of concepts are included to improve clarity and to
facilitate better understanding. Language tips and other special considerations are high-
lighted as notes wherever essential. In order to make the book more user-friendly, we have
incorporated the following key features.

O Codes with comments are provided throughout the book to illustrate how the vari-
ous features of the language are put together to accomplish specified tasks.

O Supplementary information and notes that complement but stand apart from the
general text have been included in boxes.

O Guidelines for developing efficient C programs are given in the last chapter, together
with a list of some common mistakes that a less experienced C programmer could

make. ;

Case studies at the end of the chapters illustrate common ways C features are put

together and also show real-life applications.

The Just Remember section at the end of the chapters lists out helpful hints and

possible problem areas.

Numerous chapter-end questions and exercises provide ample opportunities to the

readers to review the concepts learned and to practice their applications.

Programming projects discussed in the appendix give insight on how to integrate

the various features of C when handling large programs.

O O O O

Supplementary Material

With this revision we have tried to enhance the online learning center too. The supplemen-
tary material would include the following:

For the Instructor

O Solutions to the debugging exercises
For the Student

QO Exclusive project for implementation with code, step-by-step description and user
manual

O Code for the two projects (given in the book)
Q Two mini projects
0O Reading material on C

This book is designed for all those who wish to be C programmers, regardless of their past
knowledge and experience in programming. It explains in a simple and easy-to-understand
style the what, why and how of programming with ANSI C.

E BALAGURUSAMY

Contents

Preface to the Fourth Edition

1 Overview of C

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

History of C 1

Importance of C 3

Sample Program 1: Printing a Message 3
Sample Program 2: Adding Two Numbers 6
Sample Program 3: Interest Calculation 8
Sample Program 4: Use of Subroutines 10
Sample Program 5: Use of Math Functions 11
Basic Structure of C Programs 12
Programming Style 14

Executing a ‘C’ Program 14

Unix System 16

Ms-Dos System 18

Review Questions 19
Programming Exercises 20

2 Constants, Variables, and Data Types

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Introduction 23

Character Set 23

C Tokens 25

Keywords and Identifiers 25
Constants 26

Variables 30

Data Types 31

Declaration of Variables 34
Declaration of Storage Class 37
Assigning Values to Variables 38
Defining Symbolic Constants 44
Declaring a Variable as Constant 45
Declaring a Variable as Volatile 45

xi

23

A\

1
2.14

Contents

Overflow and Underflow of Data 46

Review Questions 49
Programming Exercises 51

3 Operators and Expressions

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

Introduction 52

Arithmetic Operators 52

Relational Operators 55

Logical Operators 57

Assignment Operators 57

Increment and Decrement Operators 59
Conditional Operator 61

Bitwise Operators 61

Special Operators 61

Arithmetic Expressions 63

Evaluation of Expressions 64
Precedence of Arithmetic Operators 65
Some Computational Problems 67

Type Conversions in Expressions 68
Operator Precedence and Associativity 72
Mathematical Functions 74

Review Questions 78
Programming Exercises 81

4 Managing Input and Output Operations

5

41
4.2
4.3
4.4
4.5

Introduction 84
Reading a Character 85
Writing a Character 88
Formatted Input 89
Formatted Output 98

Review Questions 110
Programming Exercises 112

Decision Making and Branching

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Introduction 114

Decision Making with IF Statement 114
Simple IF Statement 115

The IF....ELSE Statement 119

Nesting of IF....ELSE Statements 122
The ELSE IF Ladder 126

The Switch Statement 129

The ? : Operator 133

The GOTO Statement 136

Review Questions 144
Programming Exercises 148

52

84

114

Contents

6 Decision Making and Looping

7

9

6.1 Introduction 152
6.2 The WHILE Statement 154
6.3 The DO Statement 157
6.4 The FOR Statement 159
6.5 Jumpsin LOOPS 166
6.6 Concise Test Expressions 174
Review Questions 182
Programming Exercises 186
Arrays
7.1 Introduction 190
7.2 One-dimensional Arrays 192
7.3 Declaration of One-dimensional Arrays 193
7.4 Initialization of One-dimensional Arrays 195
7.5 Two-dimensional Arrays 199
7.6 Initializing Two-dimensional Arrays 204
7.7 Multi-dimensional Arrays 208
7.8 Dynamic Arrays 209
7.9 More about Arrays 209

Review Questions 223
Programming Exercises 225

Character Arrays and Strings

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Introduction 229

Declaring and Initializing String Variables 230
Reading Strings from Terminal 231

Writing Strings to Screen 236

Arithmetic Operations on Characters 241
Putting Strings Together 242

Comparison of Two Strings 244
String-handling Functions 244

Table of Strings 250

8.10 Other Features of Strings 252

Review Questions 257
Programming Exercises 259

User-defined Functions

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Introduction 262

Need for User-defined Functions 262

A Multi-function Program 263
Elements of User-defined Functions 266
Definition of Functions 267

Return Values and their Types 269
Function Calls 270

Function Declaration 272

faa
IVII

152

190

229

262

viii

Contents

9.9 Category of Functions 274

9.10 No Arguments and no Return Values 274
9.11 Arguments but no Return Values 277

9.12 Arguments with Return Values 280

9.13 No Arguments but Returns a Value 284
9.14 Functions that Return Multiple Values 285
9.15 Nesting of Functions 286

9.16 Recursion 288

9.17 Passing Arrays to Functions 289

9.18 Passing Strings to Functions 294

9.19 The Scope, Visibility and Lifetime of Variables 295
9.20 Multifile Programs 305

Review Questions 311
Programming Exercises 315

10 Structures and Unions 317
10.1 Introduction 317
10.2 Defining a Structure 317
10.3 Declaring Structure Variables 319
10.4 Accessing Structure Members 321
10.5 Structure Initialization 322
10.6 Copying and Comparing Structure Variables 324
10.7 Operations on Individual Members 326
10.8 Arrays of Structures 327
10.9 Arrays within Structures 329
10.10 Structures within Structures 331
10.11 Structures and Functions 333
10.12 Unions 335
10.13 Size of Structures 337
10.14 Bit Fields 337
Review Questions 344
Programming Exercises 348
11 Pointers 351
11.1 Introduction 351
11.2 Understanding Pointers 351
11.3 Accessing the Address of a Variable 354
11.4 Declaring Pointer Variables 355
11.5 Initialization of Pointer Variables 356
11.6 Accessing a Variable through its Pointer 358
11.7 Chain of Pointers 360
11.8 Pointer Expressions 361
11.9 Pointer Increments and Scale Factor 362
11.10 Pointers and Arrays 364
11.11 Pointers and Character Strings 367
11.12 Array of Pointers 369

12

13

14

Contents | ix

11.13 Pointers as Function Arguments 370
11.14 Functions Returning Pointers 373
11.15 Pointers to Functions 373
11.16 Pointers and Structures 376
11.17 Troubles with Pointers 379
Review Questions 385
Programming Exercises 388
File Management in C 389
12.1 Introduction 389
12.2 Defining and Opening a File 390
12.3 Closing a File 391
12.4 Input/Output Operations on Files 392
12.5 Error Handling During I/O Operations 398
12.6 Random Access to Files 400
12.7 Command Line Arguments 405
Review Questions 408
Programming Exercises 409
Dynamic Memory Allocation and Linked Lists 411
13.1 Introduction 411
13.2 Dynamic Memory Allocation 411
13.3 Allocating a Block of Memory: MALLOC 413
13.4 Allocating Multiple Blocks of Memory: CALLOC 415
13.5 Releasing the Used Space: Free 415
13.6 Altering the Size of a Block: REALLOC 416
13.7 Concepts of Linked Lists 417
13.8 Advantages of Linked Lists 420
13.9 Types of Linked Lists 421
13.10 Pointers Revisited 422
13.11 Creating a Linked List 424
13.12 Inserting an Item 428
13.13 Deleting an Item 431
13.14 Application of Linked Lists 433
Review Questions 440
Programming Exercises 442
The Preprocessor 444
14.1 Introduction 444
14.2 Macro Substitution 445
14.3 File Inclusion 449
14.4 Compiler Control Directives 450
14.5 ANSI Additions 453

Review Questions 456
Programming Exercises 457

Contents

|
X
I

15 Developing a C Program: Some Guidelines

15.1
15.2
15.3
15.4
15.5
15.6

Introduction 458

Program Design 458

Program Coding 460

Common Programming Errors 462
Program Testing and Debugging 469
Program Efficiency 471

Review Questions 472

Appendix I: Bit-level Programming 474
Appendix II: ASCII Values of Characters 480
Appendix III: ANSI C Library Functions 482
Appendix IV: Projects 486

Appendix V: C99 Features 537

Bibliography

458

545

Overview of C

[1.1] HISTORY OF C

‘C’ seems a strange name for a programming language. But this strange sounding language
is one of the most popular computer languages today because it is a structured, high-level,
machine independent language. It allows software developers to develop programs without
worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was
the first computer language to use a block structure. Although it never became popular in
USA, it was widely used in Europe. ALGOL gave the concept of structured programming to
the computer science community. Computer scientists like Corrado Bohm, Guiseppe Jacopini
and Edsger Dijkstra popularized this concept during 1960s. Subsequently, several languages
were announced.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Program-
ming Language) primarily for writing system software. In 1970, Ken Thompson created a
language using many features of BCPL and called it simply B. B was used to create early
versions of UNIX operating system at Bell Laboratories. Both BCPL and B were “typeless”
system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in
1972. C uses many concepts from these languages and added the concept of data types and
other powerful features. Since it was developed along with the UNIX operating system, it is
strongly associated with UNIX. This operating system, which was also developed at Bell
Laboratories, was coded almost entirely in C. UNIX is one of the most popular network
operating systems in use today and the heart of the Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the
release of many C compilers for commercial use and the increasing popularity of UNIX, it
began to gain widespread support among computer professionals. Today, C is running under
a variety of operating system and hardware platforms.

During 1970s, C had evolved into what is now known as “traditional C”. The language
became more popular after publication of the book ‘The C Programming Language’ by Brian
Kerningham and Dennis Ritchie in 1978. The book was so popular that the language came to
be known as “K&R C” among the programming community. The rapid growth of C led to the
development of different versions of the language that were similar but often incompatible.
This posed a serious problem for system developers.

2 I Programming in ANSI C

To assure that the C language remains standard, in 1983, American National Standards
Institute (ANSI) appointed a technical committee to define a standard for C. The committee
approved a version of C in December 1989 which is now known as ANSI C. It was then
approved by the International Standards Organization (ISO) in 1990. This version of C is
also referred to as C89.

During 1990's, C++, a language entirely based on C, underwent a number of
improvements and changes and became an ANSI/ISO approved language in November 1977.
C++ added several new features to C to make it not only a true object-oriented language but
also a more versatile language. During the same period, Sun Microsystems of USA created a
new language Java modelled on C and C++.

All popular computer languages are dynamic in nature. They continue to improve their
power and scope by incorporating new features and C is no exception. Although C++ and
Java were evolved out of C, the standardization committee of C felt that a few features of
C++/Java, if added to C, would enhance the usefulness of the language. The result was the
1999 standard for C. This version is usually referred to as C99. The history and development
of C is illustrated in Fig. 1.1.

1960 ALGOL International Group
1967 BCPL Martin Richards
1970 B Ken Thompson
1972 Traditional C Dennis Ritchie
)
1978 K&R C Kernighan and Ritchie
1989 ANSI C] ANSI| Committee
y
1990 ANSI/IISO C 1ISO Committee
1999 C99 Standardization Committee

Fig. 1.1 History of ANSI C

. |
Overview of C — 3

Although C99 is an improved version, still many commonly available compilers do not
support all of the new features incorporated in C99. We, therefore, discuss all the new
features added by C99 in an appendix separately so that the readers who are interested can
quickly refer to the new material and use them wherever possible.

[1.2] IMPORTANCE OF C

The increasing popularity of C is probably due to its many desirable qualities. It is a robust
language whose rich set of built-in functions and operators can be used to write any complex
program. The C compiler combines the capabilities of an assembly language with the features
of a high-level language and therefore it is well suited for writing both system software and
business packages. In fact, many of the C compilers available in the market are written in C.

Programs written in C are efficient and fast. This is due to its variety of data types and
powerful operators. It is many times faster than BASIC. For example, a program to
increment a variable from 0 to 15000 takes about one second in C while it takes more than 50
seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in funetions. Sev-
eral standard functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on
another with little or no modification. Portability is important if we plan to use a new
computer with a different operating system.

C language is well suited for structured programming, thus requiring the user to think of
a problem in terms of function modules or blocks. A proper collection of these modules would
make a complete program. This modular structure makes program debugging, testing and
maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a
collection of functions that are supported by the C library. We can continuously add our own
functions to C library. With the availability of a large number of functions, the programming
task becomes simple.

Before discussing specific features of C, we shall look at some sample C programs, and
analyze and understand how they work.

’E SAMPLE PROGRAM I: PRINTING A MESSAGE

Consider a very simple program given in Fig. 1.2.

main()

{

JEadiie printing begins... *
printf("I see, I remember");

Y L1 printing ends... &t

Fig. 1.2 A program to print one line of text

4 I— Programming in ANSI C

This program when executed will produce the following output:
I see, I remember

Let us have a close look at the program. The first line informs the system that the name of
the program is main and the execution begins at this line. The main() is a special function
used by the C system to tell the computer where the program starts. Every program must
have exactly one main function. If we use more than one main function, the compiler cannot
understand which one marks the beginning of the program.

The empty pair of parentheses immediately following main indicates that the function
main has no arguments (or parameters). The concept of arguments will be discussed in
detail later when we discuss functions (in Chapter 9).

The opening brace “{ ” in the second line marks the beginning of the function main and
the closing brace “}” in the last line indicates the end of the function. In this case, the closing
brace also marks the end of the program. All the statements between these two braces form
the function body. The function body contains a set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line
is an executable statement. The lines beginning with /* and ending with */ are known as
comment lines. These are used in a program to enhance its readability and understanding.
Comment lines are not executable statements and therefore anything between /* and */ is
ignored by the compiler. In general, a comment can be inserted wherever blank spaces can
occur—at the beginning, middle or end of a line—“but never in the middle of a word .

Although comments can appear anywhere, they cannot be nested in C. That means, we
cannot have comments inside comments. Once the compiler finds an opening token, it
ignores everything until it finds a closing token. The comment line

/*====/*====*/====*/

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we
should use them liberally in our programs. They help the programmers and other users in
understanding the various functions and operations of a program and serve as an aid to
debugging and testing. We shall see the use of comment lines more in the examples that
follow.

Let us now look at the printf() function, the only executable statement of the program.

printf("I see, I remember");

printf is a predefined standard C function for printing output. Predefined means that itis a
function that has already been written and compiled, and linked together with our program
at the time of linking. The concepts of compilation and linking are explained later in this
chapter. The printf function causes everything between the starting and the ending
quotation marks to be printed out. In this case, the output will be:

I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a
semicolon (;) mark.
Suppose we want to print the above quotation in two lines as

I see,
I remember!

This can be achieved by adding another printf function as shown below:

