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Foreword
Ap1Buov, Eoyov sopiopdtwy
Alay., Mpou. Asop.

The first part of this volume is based on a course taught at Princeton
University in 1961-62; at that time, an excellent set of notes was prepared
by David Cantor, and it was originally my intention to make these notes
available to the mathematical public with only quite minor changes.
Then, among some old papers of mine, I accidentally came across a
long-forgotten manuscript by Chevalley, of pre-war vintage (forgotten,
that is to say, both by me and by its author) which, to my taste at least,
seemed to have aged very well. It contained a brief but essentially com-
plete account of the main features of classfield theory, both local and
global; and it soon became obvious that the usefulness of the intended
volume would be greatly enhanced if I included such a treatment of this
topic. It had to be expanded, in accordance with my own plans, but its
outline could be preserved without much change. In fact, I have adhered
to it rather closely at some critical points.

To improve upon Hecke, in a treatment along classical lines of the
theory of algebraig numbers, would be a futile and impossible task. As
will become apparent from the first pages of this book, I have rather
tried to draw the conclusions from the developments of the last thirty
years, whereby locally compact groups, measure and integration have
been seen to play an increasingly important role in classical number-
theory. In the days of Dirichlet and Hermite, and even of Minkowski,
the appeal to “continuous variables” in arithmetical questions may well
have seemed to come out of some magician’s bag of tricks. In retrospect,
we see now that the real numbers appear there as one of the infinitely
many completions of the prime field, one which is neither more nor less
interesting to the arithmetician than its p-adic companions, and that
there is at least one language and one technique, that of the adeles, for
bringing them all together under one roof and making them cooperate
for a common purpose. It is needless here to go into the history of these
developments; suffice it to mention such names as Hensel, Hasse,
Chevalley, Artin; every one of these, and more recently Iwasawa, Tate,
Tamagawa, helped to make some significant step forward along this
road. Once the presence of the real field, albeit at infinite distance, ceases
to be regarded as a necessary ingredient in the arithmetician’s brew, it
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goes without saying that the function-fields over finite fields must be
granted a fully simultaneous treatment with number-fields, instead of
the segregated status, and at best the separate but equal facilities, which
hitherto have been their lot. That, far from losing by such treatment,
both races stand to gain by it, is one fact which will, I hope, clearly emerge
from this book.

It will be pointed out to me that many important facts and valuable
results about local fields can be proved in a fully algebraic context,
without any use being made of local compacity, and can thus be shown
to preserve their validity under far more general conditions. May I be
allowed to suggest that I am not unaware of this circumstance, nor of
the possibility of similarly extending the scope of even such global results
as the theorem of Riemann-Roch? We are dealing here with mathematics,
not with theology. Some mathematicians may think that they can gain
full insight into God’s own way of viewing their favorite topic; to me,
this has always seemed a fruitless and a frivolous approach. My intentions
in this book are more modest. I have tried to show that, from the point
of view which I have adopted, one could give a coherent treatment,
logically and aesthetically satisfying, of the topics I was dealing with.
I shall be amply rewarded if I am found to have been even moderately
successful in this attempt.

Some of my readers may be surprised to find no explicit mention of
cohomology in my account of classfield theory. In this sense, while my
approach to number-theory may be called a “modern” one in the first
half of this book, it may well be described as thoroughly “unmodern” in
the second part. The sophisticated reader will of course perceive that a
certain amount of cohomology, and in fact no more and no less than is
required for the purposes of classfield theory, hides itself in the theory
of simple algebras. For anyone familiar with the language of “Galois
cohomology™, it will be an easy and not unprofitable exercise to translate
into it some of the definitions and results of our Chapters IX, XII and
XIII; in one or two places (the most conspicuous case being that of the
“transfer theorem” in Chapter XII, § 5), this even makes it possible to
substitute more satisfactory proofs for ours. For me to develop such an
approach systematically would have meant loading a great deal of
unnecessary machinery on a ship which seemed well equipped for this
particular voyage; instead of making it more seaworthy, it might have
sunk it.

In charting my course, I have been careful to steer clear of the arith-
metical theory of algebraic groups; this is a topic of deep interest, but
obviously not yet ripe for book treatment. Partly for this reason, I have
refrained from discussing zeta-functions of simple algebras beyond what
was needed for the sake of classfield theory. Artin’s non-abelian L-func-
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tions have also been excluded; the reader of this book will find it easy
to proceed to the study of Artin’s beautiful papers on this subject and
will find himself well prepared to enjoy them, provided he has some
knowledge of the representation theory of finite groups.

It remains for me to discharge the pleasant duty of expressing my
thanks to David Cantor, who prepared from my lectures at Princeton
University the set of notes which reappears here as Chapters1 to VII
of this book (in many places with no change at all), and to Chevalley,
who generously allowed me to make use of the above-mentioned manus-
cript and expand it into Chapters XII and XITI. My thanks are also
due to Iwasawa and Lazard, who read the book in manuscript and offered
many suggestions for its improvement; to H. Pogorzelski, for his assis-
tance in proofreading; to B. Eckmann, for the interest he took in its
publication; and to the staff of the Springer Verlag, and that of the
Zechnersche Buchdruckerei, for their expert cooperation and their
invaluable help in the process of bringing out this volume.

Princeton, May 1967. . ANDRE WEIL

Foreword to the second edition

The text of the first edition has been left unchanged. A few correc-
tions, references, and some brief remarks, have been added as Notes at
the end of the book; the corresponding places in the text have been
marked by a » in the margin. Somewhat more substantial additions will
be found in the Appendices, originally prepared for the Russian edition
(M.L.R., Moscow 1971). The reader’s attention should be drawn to the
collective volume: J.W.S.Cassels and A. Frohlich {edd.), Algebraic
Number Theory, Acad. Press 1967, which covers roughly the same
ground as the present book, but with far greater emphasis on the cohomo-
logical aspects.

Princeton, December 1971. ANDRE WEIL
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algebraischen Zahlen”, and as a partial substitute for a historical survey,
we give here a chronological list of the mathematicians who seem to
have made the most significant contributions to the topics treated in
this volume.)

Fermat (1601-1665)
Euler (1707-1783)
Lagrange (1736-1813)
Legendre (1752-1833)
Gauss (1777-1855)
Dirichlet (1805-1859)
Kummer (1810--1893)
Hermite (1822-1901)
Eisenstein (1823-1852)
Kronecker (1823-1891)

Riemann (1826-1866)
Dedekind (1831-1916)
H. Weber (1842-1913)
Hensel (1861-1941)
Hilbert (1862-1943)
Takagi (1875-1960)
Hecke (1887-1947)
Artin (1898-1962)
Hasse (1898- )
Chevalley (1909-



Prerequisites and notations

No knowledge of number-theory is presupposed in this book, except
for the most elementary facts about rational integers; it is useful but not
necessary to have some superficial acquaintance with the p-adic valua-
tions of the field Q of rational numbers and with the completions Q,
of Q defined by these valuations. On the other hand, the reader who
wishes to acquire some historical perspective on the topics treated in the
first part of this volume cannot do better than take up Hecke’s unsur-
passed Theorie der algebraischen Zahlen, and, if he wishes to go further
back, the Zahlentheorie of Dirichlet-Dedekind (either in its 4th and final
edition of 1894, or in the 3rd edition of 1879), with special reference
to Dedekind’s famous “eleventh Supplement”. For similar purposes, the
student of the second part of this volume may be referred to Hasse’s
Klassenkorperbericht (J. D. M. V., Part I, 1926; Part I, 1930).

The reader is expected to possess the basic vocabulary of algebra
(groups, rings, fields) and of linear algebra (vector-spaces, tensor-
products). Except at a few specific places, which may be skipped in a
first reading, Galois theory plays no role in the first part (Chapters I
to VIII). A knowledge of the main facts of Galois theory for finite and
for infinite extensions is an indispensable requirement in the second
part (Chapters IX to XIII).

Already in Chapter I, and throughout the book, essential use is made
of the basic properties of locally compact commutative groups, including
the existence and unicity of the Haar measure; the reader is expected to
have acquired some familiarity with this topic before taking up the
present book. The Haar measure for non-commutative locally compact
groups is used in Chapters X and XI (but nowhere else). The basic facts
from the duality theory of locally compact commutative groups are
briefly recalled in Chapter I, § 5, and those about Fourier transforms
in Chapter VII, § 2, and play an essential role thereafter.

As to our basic vocabulary and notations, they usually agree with
the usage of Bourbaki. In particular, this applies to N (the set of the
“finite cardinals” or “natural integers” 0,1,2,...), Z (the ring of rational
integers), Q (the field of rational numbers), R (the field of real numbers),
C (the field of complex numbers), H (the field of “classical”, “ordinary”
or “Hamiltonian” quaternions). If p is any rational prime, we write F,
for the prime field with p elements, Q, for the field of p-adic numbers
(the completion of Q with respect to the p-adic valuation; cf. Chapter I,
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§3), Z, for the ring of p-adic integers (i.e. the closure of Z in Q,). The
fields R C, H, Q, are always understood to be provided with thexr usual
(or “natural™) topology; so are all finite-dimensional vector-spaces over
these fields. By F, we understand the finite field with q elements when
there is one, i.e. when q is of the form p", p being a rational prime and
n an integer =1 (cf. Chapter, § 1). We write R, for the set of all real
numbers >0.

All rings are assumed to have a unit. If R is a ring, its unit is written
Ig, or 1 when there is no risk of confusion; we write R for the multi-
plicative group of the invertible elements of R; in particular, when K is
a field (commutative or not), K™ denotes the multiplicative group of
the non-zero elements of K. We write R for the multiplicative group
of real numbers >0. If R is any ring, we write M,(R) for the ring of
matrices with n rows and n columns whose elements belong to R, and
we write 1, for the unit in this ring, i.e. the matrix (§;)) with §;;=1, or 0
according as i=j or i#j. We write ‘X for the transpose of any matrix
X eM,(R), and tr(X) for its trace, i.e. the sum of its diagonal elements;
if R is commutative, we write det(X) for its determinant. Occasionally
we write M,, ,(R) for the set of the matrices over R with m rows and n
columns.

If R is a commutative ring, and T is an indeterminate, we write R[T]
for the ring of polynomials in T with coefficients in R; such a polynomial
is called monic if its highest coefficient is 1. If S is a ring containing R,
and x an element of § commuting with all elements of R, we write R[x]
for the subring of S generated by R and x; it consists of the elements of
§ of the form F(x), with FeR[T7]. If K is a commutative field, L a field
(commutative or not) containing K, and x an element of L commuting
with all elements of K, we write K(x) for the subfield of L generated by
K and x; it is commutative. We do not speak of a field L as being an
“extension” of a field K unless both are commutative; usually this word
is reserved for the case when L is of finite degree over K, and then we
write [ L: K] for this degree, i.e. for the dimension of L when L is regarded
as a vector-space over K (the index of a group g' in a group ¢ is also
denoted by [g:¢"] when it is finite; this causes no confusion).

All topologies should be understood to.be Hausdorff topologies,
i.e. satisfying the Hausdorff “separation” axiom (“separated” in the sense
of Bourbaki). The word “homomorphism™, for groups, rings, modules,
vector-spaces, should be understood with the following restrictions:
(a) when topologies are involved, all homomorphisms are understood to
be continuous; (b) homomorphisms of rings are understood to be * uni-
tary” ; this means that a homomorphism of a ring R into a ring § is assumed
to map 1, onto 15. On the other hand, in the case of groups, homo-
morphisms are not assumed to be open mappings (i.e. to map open sets
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onto open sets); when necessary, one will speak of an “open homo-
morphism”. The word “morphism” is used as a shorter synonym for
“homomorphism”; the word “representation” is used occasionally, as a
synonym for “homomorphism”, in certain situations, e.g. when the
homomorphism is one of a group into C*, or for certain homomorphisms
of simple algebras (cf. Chapter IX, § 2). By a character of a group G, com-
mutative or not, we understand as usual a homomorphism (or “represen-
tation”) of G into the subgroup of C* defined by zZ=1; as explained
above, this should be understood to be continuous when G is given as
a topological group. The words “endomorphism”, “automorphism”,
“isomorphism” are subject to the same restrictions (a), (b) as *homo-
morphism”; for “automorphism” and “isomorphism”, this implies, in
the topological case, that the mapping in question is bijective and bi-
continuous. Occasionally, when a mapping f of a set A into a set B,
both with certain structures (usually fields), determines an isomorphism
of 4 onto its image in B, we speak of it by “abuse of language” as an
“isomorphism” of A4 into B.

In a group G, an element x is said to be of order n if n is the smallest
integer =1 such that x"=e, ¢ being the neutral element of G. If K is a
field, an element of K™ of finite order is called a root of 1 in K; in
accordance with a long-standing tradition, any root of 1 of order divid-
ing n is called an n-th root of 1 in K; it is called a primitive n-th root of
1 if its order is n. Thus the n-th roots of 1 in K are the roots of the
equation X"=1 in K.

If a, b are in Z, (a, b) denotes their g.c.d., i.e. the element d of N such
that dZ=aZ+ bZ. If R is any ring, the mapping n—n'1; of Z into R
maps Z onto the subring Z-1; of R, known as “the prime ring” in R;
the kernel of the morphism n—n:1; of Z onto Z- 1y is a subgroup of Z,
hence of the form m-Z with meN; if R is not {0} and has no zero-divisor,
m is either O or a rational prime and is known as the characteristic of R.
If m=0, n—n- 14 is an isomorphism of Z onto Z-1,, by means of which
Z-1; will frequently be identified with Z. If the characteristic of R is a
prime p> 1, the prime ring Z -1, is isomorphic to the prime field F,.

We shall consider left modules and right modules over non-commu-
tative rings, and fix notations as follows. Let R be a ring; let M and N
be two left modules over R. Then morphisms of M into N, for their
structures as left R-modules, will be written as right operators on M; in
other words, if « is such a morphism, we write it as m—ma, where meM;
thus the property of being a morphism, apart from the additivity, is
expressed by r(ma)=(rm)a for all reR and all me M. This applies in
particular to endomorphisms of M. Morphisms of right R-modules are
similarly written as left operators. This notation will be consistently
used, in particular in Chapter IX.
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As morphisms of fields into one another are assumed to be “unitary”
(as explained above), such morphisms are always injective; as we have
said, we sometimes refer to a morphism of a field X into a field L as an
“isomorphism”, or also as an embedding, of K into L. In part of this
book, we use for such mappings the “functional” notation; beginning
with Chapter VIII, § 3, where the role of Galois theory becomes essential,
we shall use for them the “exponential” notation. This means that such
a mapping 4 is written in the former case as x—4(x) and in the latter
case as x—x*. If L is a Galois extension of K, and A, are two auto-
morphisms of L over K, we define the law of composition (4, )—Ag in
the Galois group g of L over K as being identical with the law (4, y)—4op
in the former case, and as its opposite in the latter case; in other words,
it is defined in the former case by (Au)x=A(zx), and in the latter case
by x** =(x**. For instance, if K’ is a field between K and L, and } is the
corresponding subgroup of g, consisting of the automorphisms which
leave fixed all the elements of K’, the automorphisms of L over K which
coincide on K’ with a given one A make up the right coset ih when the
functional notation is used, and the left coset h4 when the exponential
notation is used.

When 4, B, C are three additively written commutative groups
(usually with some additional structures) and a “distributive” (or “bi-
additive”, or “bilinear”) mapping (a,b)—ab of Ax B into C is given,
and when X, Y are respectively subgroups of 4 and of B, it is customary
to denote by X - Y, not the image of X x Y under that mapping, but the
subgroup of C generated by that image, i.e. the group consisting of the
finite sums Y x;y; with x;eX and y,eY for all i. This notation will be
used occasionally, e.g. in Chapter V.

For typographical reasons, we frequently write exp(z) instead of ¢,
and e(z) instead of exp(2niz)=e*"?, for zeC; ordinarily e(z) occurs only
for zeR.

Finally we must explain the method followed for cross-references;
these have been inserted quite generously, with a view to helping the
inexperienced reader; the reader is advised to follow them up only when
the argument is not otherwise clear. Theorems have been numbered
continuously throughout each chapter; the same is true for propositions,
for lemmas, for definitions, for the numbered formulas. Each theorem
and each proposition may be followed by one or several corollaries.
Generally speaking, theorems are to be regarded as more important
than propositions, but the distinction between them would hardly stand
a close scrutiny. Lemmas are merely auxiliary results. Not all new con-
cepts are the object of a numbered definition; all concepts, except those
which are assumed to be known, are listed in the index at the end of the
book, with proper references. Formulas are numbered only for purposes



Prerequisites and notations XVII

of quotation, and not as an indication of their importance. When a
reference is given thus: “by prop. 2”, “by corollary 1 of th. 3", etc, it
refers to a result in the same §; when thus: “by prop. 2 of § 27, “by th. 3
of § 37, etc.,, it refers to another § of the same chapter; when thus: “by
prop. 2 of Chap.IV-2", it refers to proposition 2 of Chapter IV, § 2.
Numbers of Chapter and § are given at the top of every page. A table of
the most frequently used notations is given below, in the order of their
first appearance.

Table of notations

Chapter 1.

: modg, mody, modg.
: |xlp 1%l e Qu =R, |x],, Q, (v=rational prime or o).
: K (any p-field), R, P, =, g, ordg, ord, M*, M.

Chapter II.

: 14+ P" (as subgroup of K™ for n>1).
:{0:9%*>6, <9:9*>, G* H,, V¥, L, V', [v,v']y, [v,0'], 1, ord(x).

Chapter II1.

: (for a place v of an A-field k) |x|,, k,, 7., p, (for q,, see Chap. VII-1);

o (as a place of Q), wlv, E,=E®,k,, ¢, A, a,.

: End(E), Tryp, N, Tri s Nicpre

Chapter IV.

H P, Pcm kA(P)’ kAa X> Xos EA(P,E), EAs 'dA, MA(P’a)s (k,/k)l\’ (E/k)A
i Aut(E), o ,°, o (P, a)", |al .
. k;, M, Q(P)=kA(P)xaQI(P)’ E(P)'

Chapter V.
t Ky Eo X, L.
: Py, 1(k), id(a), P(k), h, N(a).
: |dx Adx|, R, ¢,.

Chapter V1.

deg(a)a a >by div(a), D(k)7 P(k)v Do(k)a 9, le(X).
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Chapter VII.

§1: gy, {i(cf. §6).
§2: &% [[®,, []o.
§ 3: Q(G), Ql; .
§4: Gy=ky' /k*, R(G)), 0y, 0, G}, 2, M, N, w,, [J,, Z(e,®).
§6: Gy(s), G1(s), &, (cf. Chap. V-4), G,,(s), {i(s), Z,(s).
§7: f(v), 5, A, B, Ny, @, k= l_[xv’ a=(a,), b=(b,), G, A(v), m,, L(s,w),

7,4(5,0).
§ 8: Gy, I(P), D(P).

Chapter VIIIL.
§1: K,K',n,q, R, P,m,q,R, P, 7, f e Tr, N, R, d, DK'/K), D, .
§2: A.
§3: v{d), g,
§4: 0,1, My, N, D.
Chapter IX.
§1: A;, A®B, A°.
§2: 1,v.
§3: Cl(4), B(K), K, K,.;, &, $, K', K', K..,,, &', p, H(K).
§4: {1,9}, [L/K: x’o]'
§ bH Xn.{’ {é’o}m Xp,¢9 {éy o}p
Chapter X.
§ 1: Hom(V, W), Hom(¥, L; W, M), End(¥, L), Aut(V, L).
§3: T, 3,3 T, U
Chapter XII.

§1: K, (5(1), A, X%, 0, Gk, (1:9)k 0, Gi» Uk, Xo, QIO: K.
§ 2: h(A), n, (x,0)x (for K=R,C); M, K,, Ho, K,, Pos Xos @5 1, (%0)xs

a, h(A).
§3: Ug, U,

a Chapter XIIIL
§ 1: k’ Kw ksep’ kv.sepa kabv kv,nw (5’ ‘H, 6w ‘um Py Xk! Xvs (sz)us (X,Z)k,

q, k:o+: Fv 9, kO’ 50’ Xo, km Q’[O’ ®o, ¥, Q’ &, 5:»:1 g, b
§3: hy(A), U,.
§5: (%, Vg (2,2)y, (P) (cf. Chap. IV-4), Q'(P).
§7: (x,2),,x, D, @'(m,K), (x,2),, 2'(m).
§9: B(L), N(L).

§10: ¥, 9,5, U, 8, U,, B, 7, 7,, f(w), D.
§ 11' GP’ G’h LP9 Ip, pr’ uP, J(UaP)
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