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xii " Preface

In every chapter, there are some topics of a more advanced or spe-
cialized nature that may be omitted without loss of subsequent compre-
hension. I have not tried to “star” such sections or paragraphs. Instead,
I have provided cross-references to enable a reader to skim or pass over
sections that seem less interesting and to return to them if they are
needed later in other sections of interest. Page references for the im-
portant definitions are indicated in the index.

In this introductory text, I have not been able to cover every major
topic in the literature on game theory, and I have not attempted to
assemble a comprehensive bibliography. I have tried to exercise my best
judgment in deciding which topics to emphasize, which to mention
briefly, and which to omit; but any such judgment is necessarily subjec-
tive and controversial, especially in a field that has been growing and
changing as rapidly as game theory. For other perspectives and more
references to the vast literature on game theory, the reader may consult
some of the other excellent survey articles and books on game theory,

which include Aumann (1987b) and Shubik (1982).

A note of acknowledgment must begin with an expression of my debt
to Robert Aumann, John Harsanyi, John Nash, Reinhard Selten, and
Lloyd Shapley, whose writings and lectures taught and inspired all of
us who have followed them into the field of game theory. I have bene-
fited greatly from long conversations with Ehud Kalai and Robert Weber
about game theory and, specifically, about what should be covered in a
basic textbook on game theory. Discussions with Bengt Holmstrom, Paul
Milgrom, and Mark Satterthwaite have also substantially influenced the
development of this book. Myrna Wooders, Robert Marshall, Dov Mon-
derer, Gregory Pollock, Leo Simon, Michael Chwe, Gordon Green,
Akihiko Matsui, Scott Page, and Eun Soo Park read parts of the manu-
script and gave many valuable comments. In writing the book, I have
also benefited from the advice and suggestions of Lawrence Ausubel,
Raymond Denekere, Itzhak Gilboa, Ehud Lehrer, and other colleagues
in the Managerial Economics and Decision Sciences department at
Northwestern University. The final manuscript was ably edited by Jodi
Simpson, and was proofread by Scott Page, Joseph Riney, Ricard
Torres, Guangsug Hahn, Jose Luis Ferreira, loannis Tournas, Karl
Schlag, Keuk-Ryoul Yoo, Gordon Green, and Robert Lapson. This book
and related research have been supported by fellowships from the John
Simon Guggenheim Memorial Foundation and the Alfred P. Sloan
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Foundation, and by grants from the National Science Foundation and
the Dispute Resolution Research Center at Northwestern University.
Last but most, I must acknowledge the steady encouragement of my
wife, my children, and my parents, all of whom expressed a continual
faith in a writing project that seemed to take forever.

Evanston, Illinos
December 1990



4 e e R o

Contents

Pretace

1 Decision-Theoretic Foundations

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Game Theory, Rationality, and Intelligence 1
Basic Concepts of Decision Theory 5

Axioms 9
The Expected-Utility Maximization Theorem 12

Equivalent Representations 18
Bayesian Conditional-Probability Systems 21
Limitations of the Bayesian Model 22

Domination 26
Proofs of the Domination Theorems 31

Exercises 33

2 Basic Models

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Games in Extensive Form 37

Strategic Form and the Normal Representation 46
Equivalence of Strategic-Form Games 51

Reduced Normal Representations 54

Elimination of Dominated Strategies 57
Multiagent Representations 61

Common Knowledge 63

Bayesian Games 67

Modeling Games with Incomplete Information 72

Exercises 83

3 Equilibria of Strategic-Form Games

3.1
3.2

Domination and Rationalizability 88
Nash Equilibrium 91

X1

37

88



w
¥
o
£
[
.‘I
a

-

Vil Contents
3.3 Computing Nash Equilibria 99
3.4 Significance of Nash Equilibria 105
35 The Focal-Point Effect 108
36 The Decision-Analytic Approach to Games 114
3.7 Evolution, Resistance, and Risk Dominance 117
38 Two-Person Zero-Sum Games 122
3.9 Bayesian Equilibra 127
310 Purification of Randomized Strategies in Equilibria 129
3.11 Auctions 132
3.12 Proof of Existence of Equilibrium 136
3.13 Infinite Strategy Sets 140
Exercises 148
4 Sequential Equilibria of Extensive-Form Games 154
4.1 Mixed Strategies and Behavioral Strategies 154
4.2 Equilibria in Behavioral Strategies 161
4.3 Sequential Rationality at Information States with Positive
Probability 163
44 Consistent Beliefs and Sequential Rationality at All Information
States 168
4.5 Computing Sequential Equilibria 177
4.6 Subgame-Perfect Equilibria 183
4.7 Games with Perfect Information 185
4.8 Adding Chance Events with Small Probability 187
4.9 Forward Induction 190
4.10 Voting and Binary Agendas 196
4,11 Technical Proots 202
Exercises 208
5 Refinements of Equilibrium in Strategic Form | 213
5.1 Introduction 213
5.2 Perfect Equilibria 216
5.3 Existence of Perfect and Sequential Equilibria 221
5.4 Proper Equilibria 222
5.5 Persistent Equilibria 230
5.6 Stable Sets of Equilibria 232
5.7 Generic Properties 239
5.8 Conclusions 240
Exercises 242
6 Games with Communication 244
6.1 Contracts and Correlated Strategies 244
6.2 Correlated Equilibria 249
6.3 Bayesian Games with Communication 258
6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining

Problems 263

T

Contents 1X

R —_

— rr— T —— = mrrrT T oamn o . -

ety ey

6.5 Trading Problems with Linear Uulity 271
6.6 General Participation Constraints for Bayesian Games with
Contracts 281 |
6.7 Sender—Receiver Games 283
6.8 Acceptable and Predominant Correlated Equilibna 288
6.9 Communication in Extensive-Form and Mulustage Games 294
Exercises 299
Bibliographic Note 307
Repeated Games 308
7.1 The Repeated Prisoners’ Dilemma 308
7.2 A General Model of Repeated Games 310
7.3 Stationary Equilibria of Repeated Games with Complete State
Information and Discounting 317
7.4 Repeated Games with Standard Information: Examples 323
7.5  General Feasibility Theorems for Standard Repeated Games 331
7.6  Finitely Repeated Games and the Role of Initial Doubt 337
7.7 Imperfect Observability of Moves 342
7.8 Repeated Games in Large Decentralized Groups 349
7.9 Repeated Games with Incomplete Information 352
7.10 Continuous Time 361
7.11 Evolutonary Simulation of Repeated Games 364
Exercises 365
Bargaining and Cooperation in Two-Person Games 370
8.1 Noncooperative Foundations of Cooperative Game Theory 370
8.2 Two-Person Bargaining Problems and the Nash Bargaining
Solution 375
8.3 Interpersonal Comparisons of Weighted Utility 381
8.4 Transferable Utility 384
8.5 Rational Threats 385
8.6 Other Bargaining Solutions 390
8.7 An Alternating-Offer Bargaining Game 394
8.8 An Alternating-Offer Game with Incomplete Information 399
8.9 A Discrete Alternating-Offer Game 403
8.10 Renegotiation 408
Exercises 412
Coalitions in Cooperative Games 417
9.1 Introduction to Coalitional Analysis 417
9.2 Characteristic Functions with Transferable Uulity 422
9.3 The Core 427
9.4 The Shapley Value 436
9.5  Values with Cooperation Structures 444
9.6 Other Solution Concepts 452
9.7 Coalitional Games with Nontransferable Utility 456



-

W AP M e R o O AL Ry i L W T T A LS . el [

X Contents

9.8 Cores without Transferable Uulity 462
9.9 Values without Transferable Utility 468

Exercises

Bibliographic Note 481

10 Cooperation under Uncertainty

10.1 Introduction 483
10.2 Concepts of Efficiency 485

10.3 An Example 489
10.4 Ex Post Inefficiency and Subsequent Offers

10.5 Computing Incentive-Efficient Mechanisms

478

10.6 Inscrutability and Durability 502
10.7 Mechanism Selection by an Informed Principal

10.8 Neutral Bargaining Solutions |
10.9 Dynamic Matching Processes with Incomplete Information 526

Exercises

Bibliography
Index

534

515

493
497

509

483

539
553

P ——

e sl Y S ——— )

Preface

Game Hrmo_Q has a very general scope, encompassing questions that are
basic to all of the social sciences. It can offer insights into any economic,
political, or social situation that involves individuals who have different
goals or preferences. However, there is a fundamental unity and co-
herent methodology that underlies the large and growing literature on
game theory and its applications. My goal in this book is to convey both
the generality and the unity of game theory. I have tried to present
some of the most important models, solution concepts, and results of
game theory, as well as the methodological principles that have guided
game theorists to develop these models and solutions.

This book is written as a general introduction to game theory, in-
tended for both classroom use and self-study. It is based on courses that
I have taught at Northwestern University, the University of Chicago,
and the University of Paris—Dauphine. I have included here, however,
somewhat more cooperative game theory than I can actually cover in a
first course. I have tried to set an appropriate balance between non-
cooperative and cooperative game theory, recognizing the fundamental
primacy of noncooperative game theory but also the essential and com-
plementary role of the cooperative approach.

The mathematical prerequisite for this book is some prior exposure
to elementary calculus, linear algebra, and probability, at the basic un-
dergraduate level. It is not as important to know the theorems that may
be covered in such mathematics courses as it is to be familiar with the

- basic 1deas and notation of sets, vectors, functions, and limits. Where

more advanced mathematics is used, I have given a short, self-contained
explanation of the mathematical ideas.



Decision-Theoretic Foundations

1.1 Game Theory, Rationality, and Intelligence

Game theory can be defined as the study of mathematical models of
conflict and cooperation between intelligent rational decision-makers.
Game theory provides general mathematical techniques for analyzing
situations in which two or more individuals make decisions that will
‘nAuence one another’s welfare. As such, game theory offers insights
of fundamental importance for scholars in all branches of the social
sciences, as well as for practical decision-makers. The situations that
game theorists study are not merely recreational activities, as the term
“game” might unfortunately suggest. “Conflict analysis” or “interactive
decision theory” might be more descripuvely accurate names for the
subject, but the name “game theory” seems to be here to stay.

Modern game theory may be said to begin with the work of Zermelo
(1913), Borel (1921), von Neumann (1928), and the great seminal book
of von Neumann and Morgenstern (1944). Much of the early work on
game theory was done during World War 11 at Princeton, in the same
intellectual community where many leaders of theoretical physics were
also working (see Morgenstern, 1976). Viewed from a broader perspec-
tive of intellectual history, this propinquity does not seem coincidental.
Much of the appeal and promise of game theory is derived from 1ts
position in the mathematical foundations of the social sciences. In this
century, great advances in the most fundamental and theoretical
branches of the physical sciences have created a nuclear dilemma that

" threatens the survival of our civilization. People seem to have learned

more about how to design physical systems for exploiting radioactive
materials than about how to create social systems for moderating human
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behavior in conflict. Thus, it may be natural to hope that advances 1n
the most fundamental and theoretical branches of the social sclences
might be able to provide the understanding that we need to match our
great advances in the physical sciences. This hope is one of the mou-
vations that has led many mathematicians and social scientists to work
in game theory during the past 50 years. Real proof of the power of
game theory has come In recent years from a prolific development of
important applications, especially in economics. |

Game theorists try to understand conflict and cooperation by studying
quantitative models and hypothetical examples. These examples may
be unrealistically simple in many respects, but this simplicity may make
the fundamental issues of conflict and cooperation easier to see in these
examples than in the vastly more complicated situations of real life. Of
course, this is the method of analysis in any field of inquiry: to pose
one’s questions in the context of a simplified model in which many of
the less important details of reality are ignored. Thus, even if one 1s
never involved in a situation in which people’s positions are as clearly
defined as those studied by game theorists, one can still come to under-
stand real competitive situations better by studying these hypothetical
examples.

In the language of game theory, a game refers to any social situation
involving two or more individuals. The individuals involved in a game
may be called the players. As stated in the definition above, there are
two basic assumptions that game theorists generally make about players:
they are rational and they are intelligent. Each of these adjectives 1s
used here in a technical sense that requires some explanation.

A decision-maker is rational if he makes decisions consistently 1n pur-
suit of his own objectives. In game theory, building on the fundamental
results of decision theory, we assume that each player’s objective 1s to
maximize the expected value of his own payoff, which is measured n
some utility scale. The idea that a rational decision-maker should make
decisions that will maximize his expected utility payoff goes back at least
to Bernoulli (1738), but the modern justification of this 1dea 1s due to
von Neumann and Morgenstern (1947). Using remarkably weak as-
sumptions about how a rational decision-maker should behave, they
showed that for any rational decision-maker there must exist some way
of assigning utility numbers to the various possible outcomes that he
cares about, such that he would always choose the option that maxtmizes

1 i am  ————l -
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his expected utility. We call this result the expected-utility maximization
theorem. |

It should be emphasized here that the logical axioms that justity the
expected-utility maximization theorem are weak consistency assump-
tions. In derivations of this theorem, the key assumption is generally a
sure-thing or substitution axiom that may be informally paraphrased as
follows: “If a decision-maker would prefer option 1 over option 2 when
event A occurs, and he would prefer option 1 over option 2 when event
A does not occur, then he should prefer option 1 over option 2 even
before he learns whether event A will occur or not.” Such an assump-
tion, together with a few technical regularity conditions, 1s sufficient to
guarantee that there exists some utility scale such that the decision-
maker always prefers the options that give the highest expected uulity
value.

Consistent maximizing behavior can also be derived from models of
evolutionary selection. In a universe where increasing disorder is a
physical law, complex organisms (including human beings and, more
broadly speaking, social organizations) can persist only if they behave
in a way that tends to increase their probability of surviving and repro-
ducing themselves. Thus, an evolutionary-selection argument suggests
that individuals may tend to maximize the expected value of some
measure of general survival and reproductive fitness or success (see
Maynard Smith, 1982). |

In general, maximizing expected utility payoff is not necessarily the
same as maximizing expected monetary payoff, because utility values
are not necessarily measured in dollars and cents. A risk-averse individ-
ual may get more incremental utility from an extra dollar when he 1s
poor than he would get from the same dollar were he rich. This obser-
vation suggests that, for many decision-makers, utility may be a noniin-
ear function of monetary worth. For example, one model that 1s com-
monly used in decision analysis stipulates that a decision-maker’s utility
payoff from getting x dollars would be u(x) = 1 — ¢, for some number
¢ that represents his index of risk aversion (see Pratt, 1964). More gener-
ally, the utility payoff of an individual may depend on many variables
besides his own monetary worth (including even the monetary worths
of other people for whom he feels some sympathy or antipathy).

When there is uncertainty, expected utilities can be defined and com-
puted only if all relevant uncertain events can be assigned probabilities,
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which quantitatively measure the likelihood of each event. Ramse€y
(1926) and Savage (1954) showed that, even where objective probabili-
ties cannot be assigned to some events, a rational decision-maker should
be able to assess all the subjective probability numbers that are needed
to compute these expected values.

In situations involving two or more decision-makers, however, a spe-
cial difficulty arises in the assessment of subjective probabilities. ¥or
example, suppose that one of the factors that is unknown to some given
individual 1 is the action to be chosen by some other individual 2. To
assess the probability of each of individual 2's possible choices, individual
| needs to understand 2’s decision-making behavior, so 1 may try to
imagine himself in 2’s position. In this thought experiment, 1 may
realize that 2 is trying to rationally solve a decision problem of her own
and that, to do so, she must assess the probabilities of each of 1’s possible
choices. Indeed, 1 may realize that 2 is probably trying to imagine
herself in 1’s position, to figure out what 1 will do. So the rational
solution to each individual’s decision problem depends on the solution
to the other individual’s problem. Neither problem can be solved with-
out understanding the solution to the other. Thus, when rational deci-
sion-makers interact, their decision problems must be analyzed together,
like a system of equations. Such analysis is the subject of game theory.

When we analyze a game, as game theorists or social scientists, we say
that a player in the game is intelligent if he knows everything that we
know about the game and he can make any inferences about the situ-
.tion that we can make. In game theory, we generally assume that
players are intelligent in this sense. Thus, if we develop a theory that
describes the behavior of intelligent players in some game and we believe
that this theory is correct, then we must assume that each player in the
game will also understand this theory and its predictions,

For an example of a theory that assumes rationality but not intelli-
gence, consider price theory 1n economics. In the general equilibrium
model of price theory, it is assumed that every individual is a rational
utility-maximizing decision-maker, but it is not assumed that individuals
understand the whole structure of the economic model that the price
theorist is studying. In price-theoretic models, individuals only perceive
and respond to some intermediating price signals, and each individual
is supposed to believe that he can trade arbitrary amounts at these
prices, even though there may not be anyone in the economy actually
willing to make such trades with him.

1.2 - Basic Concepts 5

Of course, the assumption that all individuals are perfectly rational
and intelligent may never be satisfied 1n any real-life situation. On the
other hand, we should be suspicious of theories and predictions that
are not consistent with this assumption. If a theory predicts that some
individuals will be systematically fooled or led into making costly mis-
takes, then this theory will tend to lose its validity when these individuals
learn (from experience or from a published version of the theory itself)
‘o better understand the situation. The importance of game theory In
the social sciences is largely derived from this fact. |

1.2 Basic Concepts of Decision Theory

The logical roots of game theory are in Bayesian decision theory. In-
deed, game theory can be viewed as an extension of decision theory (to
the case of two or more decision-makers), or as 1ts essential logical
fulfillment. Thus, to understand the fundamental ideas of game theory,
one should begin by studying decision theory. The rest of this chapter
.« devoted to an introduction to the basic ideas of Bayesian decision
theory, beginning with a general derivation of the expected utility max-
imization theorem and related results.

At some point, anyone who 1s interested in the mathematical social
sciences should ask the question, Why should I expect that any simple
quantitative model can give a reasonable description of people’s behav-
ior> The fundamental results of decision theory directly address this
question, by showing that any decision-maker who satisfies certain n-
tuitive axioms should always behave so as to maximize the mathematical
expected value of some utility function, with respect to some subjective
probability distribution. That is, any rational decision-maker’s behavior
should be describable by a utility function, which gives a quantitative
characterization of his preferences for outcomes or prizes, and a subjec-
tive probability distribution, which characterizes his beliefs about all rele-
vant unknown factors. Furthermore, when new information becomes
available to such a decision-maker, his subjective probabilities should be
revised in accordance with Bayes’s formula.

There is a vast literature on axiomatic derivations of the subjective
probability, expected-utility maximization, and Bayes’s formula, begin-
ning with Ramsey (1926), von Neumann and Morgenstern (1947), and
Savage (1954). Other notable derivations of these results have been
offered by Herstein and Milnor (1953), Luce and Raifta (1957), An-
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scombe and Aumann (1963), and Pratt, Raiffa, and Schlaiffer (1964);
for a general overview, see Fishburn (1968). The axioms used here are
mainly borrowed from these earlier papers in the literature, and no
attempt is made to achieve a logically minimal set of axioms. (In fact, a
number of axioms presented in Section 1.3 are clearly redundant.) |

Decisions under uncertainty are commonly described by one of two
models: a probability model or a state-variable model. In each case, we speak
of the decision-maker as choosing among lotteries, but the two models
differ in how a lottery is defined. In a probability model, lottertes are
probability distributions over a set of prizes. In a state-variable model,
lotteries are functions from a set of possible states into a set of prizes.
Each of these models is most appropriate for a specific class ot appli-
cations.

A probability model is appropriate for describing gambles in which
the prizes will depend on events that have obvious objective probabili-

ties; we refer to such events as objective unknowns. These gambles are

the “roulette lotteries” of Anscombe and Aumann (1963) or the “risks”
of Knight (1921). For example, gambles that depend on the toss of a
fair coin, the spin of a roulette wheel, or the blind draw of a ball out
of an urn containing a known population of identically sized but dif-
ferently colored balls all could be adequately described in a probability
model. An important assumption being used here 1s that two objective
unknowns with the same probability are completely equivalent for de-

cision-making purposes. For example, if we describe a lottery by saying

that it “offers a prize of $100 or $0, each with probability '2,” we are
assuming that it does not matter whether the prize is determined by
tossing a fair coin or by drawing a ball from an urn that contains 50
white and 50 black balls.

On the other hand, many events do not have obvious probabihities;
the result of a future sports event or the future course of the stock
market are good examples. We refer to such events as subjective un-
knowns. Gambles that depend on subjective unknowns correspond to
the “horse lotteries” of Anscombe and Aumann (1963) or the “uncer-
tainties” of Knight (1921). They are more readily described in a state-
variable model, because these models allow us to describe how the prize
will be determined by the unpredictable events, without our having to
specify any probabilities for these events.

Here we define our lotteries to include both the probability and the
staté-variable models as special cases. That is, we study lotteries in which

1.2 - Basic Concepts 7

the prize may depend on both objective unknowns (which may be di-
rectly described by probabilities) and subjective unknowns (which must
be described by a state variable). (In the terminology of Fishburn, 1970,
we are allowing extraneous probabilities in our model.)

Let us now develop some basic notation. For any finite set Z, we let
A(Z) denote the set of probability distributions over the set Z. That 1s,

(1.1) A2) = {qZ — R| 2 ¢(y) =1 and ¢(z) = 0, Vz¢€Z}

y€Z

(Following common set notation, “|” in set braces may be read as “such
that.”)

Let X denote the set of possible prizes that the decision-maker could
ultimately get. Let () denote the set of possible states, one of which will
be the true state of the world. To simplify the mathematics, we assume
that X and Q are both finite sets. We define a loitery to be any function
f that specifies a nonnegative real number f(x|t), for every prize x in X
and every state ¢ in , such that 2.y f(x|t) = 1 for every ¢ n Q. Let L
denote the set of all such lotteries. That 1s,

L = {0 - AX)}.

For any state ¢ in { and any lottery f1n L, f(-1¢) denotes the probability
distribution over X designated by fin state £. That is,

fC18) = (flx|heex € BEX).

Fach number f(x|?) here is to be interpreted as the objective condi-
tional probability of getting prize x in lottery f if ¢ is the true state of
the world. (Following common probability notation, “|” in parentheses
may be interpreted here to mean “given.”) For this interpretation to
make sense, the state must be defined broadly enough to summarize all
subjective unknowns that might influence the prize to be received. Then,
once a state has been specified, only objective probabilities will remain,
and an objective probability distribution over the possible prizes can be
calculated for any well-defined gamble. So our formal definition of a
lottery allows us to represent any gamble in which the prize may depend.
on both objective and subjective unknowns.

A prize in our sense could be any commodity bundle or resource
llocation. We are assuming that the prizes in X have been defined so
that they are mutually exclusive and exhaust the possible consequences
of the decision-maker’s decisions. Furthermore, we assume that each
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prize in X represents a complete specification of all aspects that the
decision-maker cares about in the situation. resulting from his decisions.
Thus, the decision-maker should be able to assess a preference ordering

‘over the set of lotteries, given any information that he might have about

the state of the world.
The information that the decision-maker might have about the true

state of the world can be described by an even, which is a nonempty
subset of (. We let E denote the set of all such events, so that

= = {S|S C { and S # ).

For any two lotteries f and g n L and any event § in =, we write
f =, g iff the lottery f would be at least as desirable as g, in the opinion
of the decision-maker, if he learned that the true state of the world was
in the set S. (Here iff means “if and only if.”) That is, f =5 g iif the
decision-maker would be willing to choose the lottery f when he has to
choose between f and g and he knows only that the event S has occurred.
Given this relation (=), we define relations (> ) and (~;) so that

f~sg iff f=5g and g =5 f;
\v.m%mm,\wmm and g *s /.

That is, f ~s g means that the decision-maker would be indifferent
between f and g, if he had to choose between them after learning S;
and f > g means that he would strictly prefer f over g in this situation.

We may write =, >, and ~ for =q, >q, and ~q, respectively. That 1s,
when no conditioning event 1s mentioned, it should be assumed that we
are referring to prior preferences betore any states in §) are ruled out
by observations.

Notice the assumption here that the decision-maker would have well-
defined preferences over lotteries conditionally on any possible event
in =. In some expositions of decision theory, a decision-maker’s condi-
tional preferences are derived (using Bayes’s formula) from the prior
preferences that he would assess before making any observations; but
such derivations cannot generate rankings of lotteries conditionally on
events that have prior probability 0. In game-theoretic contexts, this
omission is not as innocuous as it may seem. Kreps and Wilson (1982)
have shown that the characterization of a rational decision-maker’s be-
liefs and preferences after he observes a zero-probability event may be
crucial in the analysis of a game.

For any number a such that 0 = a = 1, and for any two lotteries f
and gin L, af + (1 — a)g denotes the lottery in L such that

vl e el 4 At
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(@f + (1 — w)g)x|t) = afix[ty + (1 — a)g(x}f), Vx € X, Vi€ (b

To interpret this definition, mzﬂﬁomm_awmﬁ a ball is going to be drawn
from an urn in which « is the proportion of black balls and 1 — a 1s

‘the proportion of white balls. Suppose that if the ball is black then the

decision-maker will get to play lottery f and if the ball 1s white then the
decision-maker will get to play lottery g. Then the decision-maker’s
ultimate probability of getting prize x if £ 1s the true state is of(x|t) +
(1 — a)g(x|t). Thus, af + (1 — a)g represents the compound lottery that
is built up from f and g by this random lottery-selection process.

For any prize x, we let [x] denote the lottery that always gives prize x

for sure. That is, for every state ¢,

12  Koly=1ify==x [xly=01y#x

Thus, a[x] + (1 — o)[y] denotes the lottery that gives either prize x or
prize y, with probabilities @ and 1 — a, respectively.

1.3 Axioms

Basic properties that a rational decision-maker’s preferences may be
expected to satisfy can be presented as a list of axioms. Unless otherwise
stated, these axioms are to hold for all lotteries ¢, f, g, and & 1n L, for
A1l events S and 7 in =, and for all numbers a and B between 0 and 1.

Axioms 1.1A and 1.1B assert that preferences should always form a
complete transitive order over the set of lotteries.

AxioMm 1.1A Anozwrmqmznmmv. f=zsgorg=sf
AXIOM 1.1B (TRANSITIVITY). Iff=;gandg = h then f =g h.

It is straightforward to check that Axiom 1.1B implies a number of
other transitivity results, such as if f ~5 g and g ~ h then f ~5 h; and
if f>¢ gand g =5 h then f > h.

Aviom 1.2 asserts that only the possible states are relevant to the
decision-maker, so, given an event §, he would be indifferent between
two lotteries that differ only in states outside §.

"AXIOM 1.2 (RELEVANCE). If f(-1) = g(-{) Vt €S, then f ~¢ &.

Axiom 1.3 asserts that a higher probability of getting a better lottery
is always better.
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AXIOM 1.3 (MONOTONICITY). Iff>shand 0 = <a = 1, then

of + (1 —a)h > Bf + (1 — B)h.

Building on Axiom 1.3, Axiom 1.4 asserts that v+ (1 — y)h gets
better in a continuous manner as 7y increases, so any lottery that is
ranked between f and £ is just as good as some randomization between

fand hA.

AXIOM 1.4 (CONTINUITY). Iff = gand g =5 h, then there exists
some number y such that 0 <y < land g ~svf + (1 — Vi

The substitution axioms (also known as independence or sure-thing
axioms) are probably the most important in our system, in the sense
that they generate strong restrictions on what the decision-maker’s pref-
erences must look like even without the other axioms. They should also
be very intuitive axioms. They express the idea that, if the decision-
maker must choose between two alternatives and 1f there are two mu-
tually exclusive events, one of which must occur, such thatin each event
he would prefer the first alternative, then he must prefer the frst
alternative before he learns which event occurs. (Otherwise, he would
be expressing a preference that he would be sure to want to reverse
after learning which of these events was true!) In Axioms 1.5A and
1.5B, these events are objective randomizations in a random lottery-
selection process, as discussed in the preceding section. In Axioms 1.6A
and 1.6B, these events are subjective unknowns, subsets of {}.

AX10M 1.5A (OBJECTIVE SUBSTITUTION). Ife=sfandg=sh
and 0 = a < 1, then ae + (1 — a)g =5 of + (1 — a)h.

AXIOM 1.5B (STRICT OBJECTIVE SUBSTITUTION). Ife >5f
and g = hand 0 < a = 1, then ae + (1 — a)g >5of + (1 — )i

AXIOM 1.6A (SUBJECTIVE SUBSTITUTION). Iff=g5gandf =7
gand S N'T = O, then f =5ur &

AXIOM 1.6B (STRICT SUBJECTIVE SUBSTITUTION). Iff>5g
and f >rgand S N T = O, then f >g,r &.

1.3+ Axioms 11

To fully appreciate the importance of the substitution axioms, we may
find it helpful to consider the difficulties that arise in decision theory
when we try to drop them. For a simple example, suppose an individual
would prefer x over y, but he would also prefer .5[y]+.5[z] over .5[x] +
5[z], in violation of substitution. Suppose that w is some other prize
that he would consider better than .5{x] + .5[z] and worse than .5[y] +

5[z]. That 1s,
x>y but .5[y] + .5[z] > [w] > .5[x] + .5[z].

Now consider the following situation. The decision-maker must first
decide whether to take prize w or not. If he does not take prize w, then
a coin will be tossed. If it comes up Heads, then he will get prize z; and
if it comes up Tails, then he will get a choice between prizes x and y.
 What should this decision-maker do? He has three possible decision-
making strategies: (1) take w, (2) refuse w and take x if Tails, (3) retuse
w and take y if Tails. If he follows the first strategy, then he gets the
lottery [w]; if he follows the second, then he gets the lottery .5[x] +
5[z]; and if he follows the third, then he gets the lottery .5[y] + .5[z].
Because he likes .5[y] + .5[z] best among these lotteries, the third
strategy would be best for him, so it may seem that he should refuse w.
However, if he refuses w and the coin comes up Tails, then his pref-
erences stipulate that he should choose x instead of y. So if he refuses
w, then he will actually end up with z if Heads or x if Tails. But this
lottery .5[x] + .5[z] is worse than w. So we get the contradictory conclu-
sion that he should have taken w in the first place.

Thus, if we are to talk about “rational” decision-making without sub-
stitution axioms, then we must specify whether rational decision-makers
are able to commit themselves to follow strategies that they would sub-
sequently want to change (in which case “rational” behavior would lead
to .5[y] + .5[z] in this example). If they cannot make such commrtments,
then we must also specify whether they can foresee their future incon-
stancy (in which case the outcome of this example should be [w]) or not
(in which case the outcome of this example should be .5[x]}+.5]z]). If
none of these assumptions seem reasonable, then to avoid this dilemma
we must accept substitution axioms as a part of our definition of ration-

ality.

Axiom 1.7 asserts that the decision-maker is never indifferent between
all prizes. This axiom is just a regularity condition, to make sure that
there is something of interest that could happen in each state.
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AXIOM 1.7 (INTEREST). For every stale in Q, there exist prizes y and
2 in X such that [y] > (2]

Axiom 1.8 is optional in our analysis, 1n the sense that we can state a
version of our main result with or without this axiom. It asserts that the

decision-maker has the same preterence ordering over objective gam-
bles in all states of the world. If this axiom fails, it i1s because the same

prize might be valued differently in different states.

AXIOM 1.8 (STATE NEUTRALITY). Forany two states v and t tn (1,
i fi17) = fC|0) and g(|n) = g(|t) and f =, g then f 2y &

1.4 The Expected-Utility Maximization Theorem

A conditional-probability function on () is any function p:E — A({2) that
specifies nonnegative conditional probabilities p(¢|S) for every state ¢ in
Q and every event S, such that

p(t|S) =0 if ¢t £ S, and > p(r]S) = 1.

réesS

Given any such conditional-probability function, we may write

p(R|S) = 2 p(|S), VRC, VSE =3

reR

A utility function can be any function from X X Q) into the real numbers
R. A utlity function u:X X ) — R 1s state independent 1tf 1t does not
actually depend on the state, so there exists some function U:X — R

such that u(x,t) = U(x) for all x and &.
Given any such conditional-probabihty function $ and any utility func-

tion u and given any lottery fin L and any event Sin =, we let E (u( f)|S)
denote the expected utility value of the prize determined by f, when
p(-1S) is the probability distribution for the true state of the world. That

1S,

E,u(f)|S) = 2 p(t]S) 2 ulx)f(x]0)

tES x€X

THEOREM 1.1. Axioms 1.1AB, 1.2, 1.3, 1.4, 1.5AB, 1.6AB, and 1.7
are jointly satisfied if and only tf there exists a utility function w:X X {1 > R
and a conditional-probability function p:= — A(L)) such that

e AR L

1.4 - Expected-Utility Maximization Theorem 13

(1.3) max u(x,t) = 1 and min u(x,f) = 0, Vt¢ ;

x€X x€X

14 pR|T) = pR|SWES|T), VR, VS, and VT such that

RCSCTCQ and S #U;

(1.5) = g if and only if E,(u(f)|S) = E,(u(g)|9),

Vig €L, VSE€E.

Furthermore, given these Axioms 1.1AB—1.7, Axiom 1.8 is also satisfed if and
only if conditions (1.3)—(1.5) here can be satisfied with a state-independent utilaty

function.

In this theorem, condition (1.3) is a normalization condition, asserting
that we can choose our utility functions to range between 0 and 1 1n
every state. (Recall that X and {} are assumed to be finite.) Condition
(1.4) is a version of Bayes’s formula, which establishes how conditional
probabilities assessed 1n one event must be related to conditional prob-
abilities assessed in another. The most important part of the theorem
is condition (1.5), however, which asserts that the decision-maker always
prefers lotteries with higher expected utility. By condition (1.5), once
we have assessed u and p, we can predict the decision-maker’s optimal
choice in any decision-making situation. He will choose the lottery with
the highest expected utility among those available to him, using his
subjective probabilities conditioned on whatever event in {} he has ob-
served. Notice that, with X and () finite, there are only finitely many
atility and probability numbers to assess. Thus, the decision-maker’s
preferences over all of the infinitely many lotteries in L can be com-
pletely characterized by finitely many numbers.

To apply this result in practice, we need a procedure for assessing
the utilities u(x,t) and the probabilities p(t]S), for all x, ¢, and S. As Raitfa
(1968) has emphasized, such procedures do exist, and they form the
basis of practical decision analysis. To define one such assessment pro-
cedure, and to prove Theorem 1.1, we begin by defining some special
lotteries, using the assumption that the decision-maker’s preferences

satisfy Axioms 1.1AB-1.7.
Let a, be a lottery that gives the decision-maker one of the best prizes

“in every state; and let a, be a lottery that gives him one of the worst

prizes in every state. That is, for every state ¢, a,(y]t) = 1 = ay(zlt) for
some prizes y and z such that, for every x in X, y = X = 2- Such best
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and worst prizes can be found in every state because the preference
relation (Z,) forms a transitive ordering over the finite set X.
For any event S in E, let bs denote the lottery such that

bo(-|t) = a;(-|t) it & €3,

bo(-[8) = ag(-|8) if t £ S.

That is, bs is a “bet on S” that gives the best possible prize if § occurs

and gives the worst possible prize otherwise.
For any prize x and any state ¢, let ¢, be the lottery such that

C. 7)) = _”H“_A_ﬂv if r=1¢,

Coi(-|T) = aoA._%v if 7€t

That is, ¢, is the lottery that always gives the worst prize, except 1n state
t, when 1t gives prize x.

We can now define a procedure to assess the utilities and probabilities
that satisfy the theorem, given preferences that satisfy the axioms. For
each x and ¢, first ask the decision-maker, “For what number  would

you be indifferent between [x] and Ba, + (1 — B)a,, if you knew that ¢
was the true state of the world?” By the continuity axiom, such a number

must exist. Then let u(x,t) equal the number that he specifies, such that

[X] ~ ulx,t)a, + (1 — ulx,t))a,.

For each t and S, ask the decision-maker, “For what number y would

you be indifferent between by, and ya, + (1 — ¥)ao if you knew that
the true state was in S?” Again, such a number must exist, by the

continuity axiom. (The subjective substitution axiom guarantees that
ay s by =5 a.) Then let p(t|S) equal the number that he specifies, such

that
Pa s M&Q_mva_ + (1 - %Q__.mvvao.

In the proof of Theorem 1.1, we show that defining » and p in this way
does satisfy the conditions of the theorem. Thus, finitely many questions
suffice to assess the probabilities and utilities that completely character-

ize the decision-maker’s preferences.

Proof of Theorem 1.1. Let p and u be as constructed above. First, we
derive condition (1.5) from the axioms. The relevance axiom and the

definition of u(x,t) implies that, for every state 7,

—tye e A
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Cey ~in U Bl + (1 — u(x,t))a,.
Then subjective substitution implies that, for every event S,

c

x4

E,% u(x,)by + (1 — ulx,))a,.

Axioms 1.5A and 1.5B together imply that f = g if and only if

] 1 1 1
@v%.*. I_l.m.wul_vaoWM @ %.+A I@vao.

(Here, | Q)] denotes the number of states in the set {).) Notice that

@ PR 1 vao _ _|Mi.v > 2 flx|oe,,.

- @ L€l x€X

But, by repeated application of the objective substitution axiom,

1€f) xcX

mwi_.v M 2 .\.AR_&&RL

~ v > > \QE??&F: + (1 — :Q&EOV

S _g t€f) xeX

~s Aﬂhv > 2 \@_SA:Q&?Q_ S)a,

b_ tef) xeX

(1 = plt]S)ao) + (1 — u(x,)ao)

- (fm) 3 2wt

+{1 = 2 M%_%EE_%_ET

tef) x€X

= (E,(u()9)/1Q))a; + (1 = (E,u(£)|5)7]Q])a,.
Similarly,
(1/]Q))g + (1 = (1/|Q])ao
~ s (E,(u(g)|8)|Qa, + (1 = (E,(u(2)]5)/|2])ap.

Thus, by transitivity, f = g if and only if
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(&, 191y + (1 = Ew(H]$/1)ao
- (£ @]9/, + (1 - (E(2)]9/12D)ao

But by monotonicity, this final relation holds if and only if

E,(u()S) = E,(w(g)|$),

becatse Interest and strict subjective substitution guarantee that

> . dg. 1 DUS condition (1.5) is satisfied.
ﬁﬂ— __J Q- ’ . P— .
Next, we derive condition (1.4) from the axioms. For any events R

and 3,
() e+ (=)= () 32

L) 5 (p(r]S)a, + (1 = pr|SNao)

S E r€R

1 1
- ._lmﬂv (p(R]|S)a, + (1 — Em_mvvaov + A - _|m|_v Qg

Ly objective substitution. (R} is the number of states in the set R.) Then,
:.wm:x. Axioms 1.5A and 1.5B, we get

by ~s P(R|S)ay + (1 = p(R|S)ao.

By the relevance axiom, bs ~s a, and, for any r not in S, by ~s do-
SO ..:m above formula implies (using monotonicity and interest) that
p(riy) = 0ifr ¢ S, and p(S|S) = 1. Thus, p1sa conditional-probability
function, as defined above.

Now, suppose that R € S C T. Using bg ~s @, again, we get

br ~s p(R|S)bs + (1 — p(R|S))ay.

rurthermore, because be, bs, and g all give the same worst prize outside

5. yelevance also implies
by ~ps PRIS)bs + (1 = p(R]S)ao.
(Here TS = {t|t € T,t £ S}) So, by subjective and objective substitution,
by~ PRISbs + (1 = p(R|S)ag
RIS pSITIay + (1 = p(SITHag) + (1 — p(R|SNag
= p(R|S)PS|Da, + (1 — pR|S)p(S|T)ao.

s
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But b, ~7 p(RIT)a, + (1 — p(R|T))ao. Also, a, > ag, SO monotonicity
implies that p(R|T) = 5(R|S)p(S| T). Thus, Bayes’s formula (1.4) follows
from the axioms. | .

If y is the best prize and z is the worst prize in state ¢, then [y] ~, a,
and [z] ~y @q, SO that u(y,t) = 1 and u(z,t) = 0 by monotonicity. So the
range condition (1.3) 1s also satisfied by the utiity function that we have
constructed. | |

If state neutrality is also given, then the decision-maker will give us
the same answer when we assess u(x,t) as when we assess u(x,r) for any
other state r (because [x] ~ Pa, + (1 — B)ay implies [x] ~; Ba, +
(1 — B)a,y, and monotonicity and interest guarantee that his answer 1s
unique). So Axiom 1.8 implies that u is state-independent.

To complete the proof of the theorem, it remains to show that the
existence of functions u and p that satisfy conditions (1.3)—(1.5) 1n the
theorem is sufficient to imply all the axioms (using state independence
only for Axiom 1.8). It we use the basic mathematical properties of the
expected-utility formula, verification of the axioms is straightforward.
To illustrate, we show the proof of one axiom, subjective substitution,
.nd leave the rest as an exercise for the reader.

Suppose that f =g g and f Zr gand 5 N T = &. By (1.5), E, (u(f)|S)
= E,(u(g)|S) and mb?Q:j = E,(u(g)|T). But Bayes’s formula (1.4)
implies that

E)SUT) = = 3 plS U Df|uxd

tESUT xeX

S S bt )pS|S U Tf(xltyulx,b)

T1ES x€X

+ 3 3 pel DTS U THfte| hulx,t)

teT x€X

p(S|S U TE u( ,)|S) + p(T|S U T)E (u( f)|S)
and
E,(u(g)|S U T) = p(S|S U TIE,(u(g)lS) + p(T|S U THE (u(g)|9)-

So E,(u(f)|S U T) = E,u(g)|$ UT) and f Zsurg. ™
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1.5 Equivalent Representations

When we drop the range condition (1.3), there can be more than one
pair of utility and conditional-probability functions that represent the
same decision-maker’s preferences, in the sense of condition (1.5). Such
equivalent representations are completely indistinguishable in terms of
their decision-theoretic properties, so we should be suspicious of any
theory of economic behavior that requires distinguishing between such
equivalent representations. Thus, it may be theoretically important to
be able to recognize such equivalent representations.

Given any subjective event 3, when we say that a utility function v
and a conditional-probability function g represent the preference order-
ing =, we mean that, for every pair of lotteries f and g, E (v(f )|S) =

E (v(g)|S) if and only if =g

THEOREM 1.2. Let S in & be any given subjective event. Suppose that the
decision-maker’s preferences satisfy Axioms 1.1AB through 1.7, and let u and p _
be utility and conditional-probability functions satisfying (1.3)—(1.5) in Theorem | —

1.1. Then v and q represent the preference ordering = if and only if there N

exists a positive number A and a function B:S — R such that

(| Syvix,t) = Ap(t|Sulx,p) + B@), VL €S, Vx € X.

Proof. Suppose first that A and B(-) exist as described n the theorem.
Then, for any lottery f,

E(u(f)]S) = 2 Z flx|Hat]Su(x.0)

teS xeX

S 3 fix| A Sulx,t) + B(0)

(€S x€X
= A ;MW W\Ax_&ﬁ:_mviﬁe + WE& mex_s

= AE, w(f)|S) + 2 BO,

(€S

because S..x flx|f) = 1. So expected v-utility with respect to ¢ 1s an
increasing linear function of expected u-utility with respect to p, because
A > 0. Thus, E(v(f)|S) = mq@AE_mv if and only if N@A:A\:mv =
E,(u(g)|S), and so v and ¢ together represent the same preference
ordering over lotteries as u and .

g bl e L I T
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Conversely, suppose now that v and g represent the same preference
ordering as u and p. Pick any prize x and state ¢, and let

_ Edvlea)]S) = Eov(@0)|S).
E (v(a))|S) — E (v(ao) S)

A

Then, by the linearity of the expected-value operator,

| NQ?AV&_ + .C — Vvaov_mv = MaAﬁAaav_Mv + VANQAQAQL_MV — maﬁﬁﬁacv_,wvv
= m__m@?iv_.wr

50 ¢, ~s Aa; + (1 — N)ao. In the proof of Theorem 1.1, we constructed
u and p so that

Cx.t ~s ﬁ@nb?a + (1 - u(x,t))ao
~ulxt)p(t]Say + (1 - p(t|SNay) + (1 — ulx,))ao
~¢ p(t|Suxa, + (1 — p(E|SHulxt))a-

The monotonicity axiom guarantees that only one randomization be-
tween a, and a, can be just as good as ¢, ,, SO

A = p(t| S)ulx,t).

But ¢, differs from aq only in state ¢, where 1t gives prize x instead of

the worst prize, soO

E (v(c.)|S) — E fv(a)]S) = q(tS) T@ ~ min %_& .

1€X

Thus, going back to the definition of A, we get

q(t] $)(w(x,t) — min v(z,1))

z€X

ma?@_v_mv — ma?@:zmv |

p(t| SHulx,ty =

Now let
A= maﬁqﬁ_v_mv — maﬁia&_mv_

and let

B(t) = q(t|S) min v(z,?).

z€EX



