c
0
+
+

A

T

=/
=
S
2
&

i’ it W RSN

More Exceptional G4+

40 New Engineering Puzzles, Programming
Problems, and Solutions

(ZR3hR)

(3€() Herb Sutter =




e H RS

v i
. More Exceptional C++
(FR3ZhR)
40 New Engineering Puzzles, Programming Problems, and Solutions
| (%€) Herb Sutter =




English reprint edition copyright © 2006 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: More Exceptional C++: 40 New Engineering
Puzzles, Programming Problems, and Solutions (ISBN 0-201-70434-X) by Herb Suiter,
Copyright © 2002.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A FHF LR ENIR HPearson Education Asia Lid AL T iHRE MR Bk, &
SHmEBEFT, TRUEMHFREFSDEEBNE.

SR T e AR FCREBR N (AaEPEEE. RO E G EHX)
HWERLT.

FH# AN A Pearson Education ($54%H HRER) BB nE, TiREH
HHE.

BEFAE. @B,
4 Ewmie bR RA RS

EHFENEIZS: BFE: 01-2006-0526
BHERSE (CIP) ¥ig

More Exceptional C++ (3&3ChR) / (38) iﬁﬁ#‘f (Sutter, S.) * 4“1. ﬂﬁl.; : -v;;:’,: -

AR, 2006.3

(C++itiH7 B 4)

454 JFi3C: More Exceptional C++: 40 New Engineering Puzz&es; Psogrammmg
Problems, and Solutions .

ISBN 7-111-18370-3

.M 0L LSS - Bk -%3x NV.TP312
ERAEBHECIPEIBZF (2006) F0046835

PLR T v MR et EREEF EAS22S BB 100037)
TR BIRE

Jbm 4 L ESLERRITENRI - FHEBBILHRITHKRT
200643 A 8 1Rk 3 1 R EN Al

718mm x 1020mm 1/16 - 18.75EN3k

EN%k: 0001-3 000/}

Efr: 36.005¢

A, mAAT. BRI, 8, diitRiTHiER
FitlaHhik: (010) 68326294



‘CH+ZHEBL” MBS

B C++¥E 4 4 H R ISO/ANSI C++45ifE (Rt LA3kE, LABjarne Stroustrup b iy f3C++%t
BHOM—ERESHDHESRA P BEMERCH, FXIEH, RTHRET
CHIMERY Rtk sh , CH++IR Bt BB HEL B 7 s e il b & RO & R4 A B wTLALE 3T
MEHE MBS, R, &SR, @EREF.

XEHEFEMRASBER R LSRR EEME R “RIREE", 58FE,
feHd:, RERXLETMAXLAMNESHRAL, URECHRIERF HEEEEBAAIK
RHZRBFRITEAZ, ENERTFHEBROCHHE, HHxANitbRAFE
BHERIRE, FHER—FABEOERE. BEEER, XEERALRLHRHICH+H
BECLE H E 2RISR .

BANAK, BERERSL. RE&Rs), RiFR. A4LTH. BROHE. BEE
AZHEURBRADARGSENNEMKEERBRRI-NMEROERGF~LRRERE,
EAKIE, HRERMMHRAERFREC+H+IIEKITF AR, Hitk, LSRR, C+vt
HIp K EE— B E LU — A EROREE LR B FEREE.

BT EEEAN Y SLHHAR T —RMMBEHIC+H+BEHE, BIIRETHECH+EF AR
B, HAEBRABRELAFETRKBLRGEETCH+IEE . FIMER S EHATRFIR
fi2, C++EEHF LR BES T —EMNREER. KAmEdXNFHES, BENET,
Javadi KRR SR L EE S, PEKE= LS. TELAREAR ME, W
T “BRAEHR7 RC++ESHNHHSIBUA R - SHBOAYE, XUIRBANX
C++IHIREE TIEREZTHAMENL.

LR Tl iR e 4By 3k R B 4k 82 AP EC++ “BLRIL™ BFH#BEBIM, M2006
RSN —E CH+ikitH B4 A, XENBFHFERS, SROELS, K
Y% % HaIEHerb SutterERME AN ACH+BRERMBIRE . HFE, WER
WHELEHACHEME, UssRMAE, ¥BBmERYE, B ENRERKREZE.
iR EREQIRWHE., F—ABHEMN B ARSI, BRENHNEREA.
HXEAPHSEHEARE, RROFEENHBRRNEAR. BHHESEBAHDE
C++itBHEAFRIE D,

x
20055124

hTFEXS
of

w.royaloo.com



For Giinter and Elisabeih



=
F =

MAA B AT R? ERTHEOFAESBRPEREBE—HN.

1. ] Rl

2. B—RFIARBENEMN, BX—REPTHROKREINRBRBKLEESED
mY,
MREREE TEXSNES BT EMNEREMBEF A ZHMNRS, MRRE
BRA—MLERT . R, EAEERDERZE, PRI 5058 Bz %5 500 L 41 15 ?
MEA ACLHIRPETE LT, REIERESERE, BikE.

Blitn, |22 —LAEAIER MFred Picker# MM ItBE, &R
M, BERARNRENFS, —R0FRE, ZRARRTT. BT ROIERKE
SYBRIHEER ] R RATA B THROL . TR eI AR A — RARRER T ix &
#HY, JWAVA B ERER, TWREIRRS “BE” WHHERTEE L.

ZREE R TCH+BEFNRGE, B—FAAEHERRBHEICH+RBATIIFHN,
Han .

o f(a++);F0f(a); ++a; 2L FRIR RIBORD 7

s PREEGE A — MR B RBE—A setlINEND?

s BEGEEMSEHA—/ 4L AvEIvector, EHANNEELHKELLABRIARYN
W, RABERZvector R 5 AINFREL RS, B4, velear(fEl:
12 ,

HbF 2B X ERUPBEORBEERLER ‘no”, FURRLSRXER

BT, BRMEZERATR “no” 7 {REEE?

ABEZE T XERBURBREBOHEN “RUREENERF RS, &
HELBEGREAB—H (4RT, BHKE (Exceptional C++) BRHb), REHK
B BET NCH+HRE, BARXTEINEE (A Y4RA SRR a8
TIERBEARR B KRR AEN, XBEAEEL), E24ERE “BR™ —iF
KB EiRERIVIRER

—BEHHERTXERERAEER, RERBNRT BT LI THRET,
KT h &k FEES DR IR £, '

Andrew Kdenig
2001%6 A



=

Al B

HA BT FE RIS RLRR T F 2R R AT 8%, IR S 51 54041,
HBHIMMNCHNRAREER, BRBMNBREESXINEREMAHLIRRLY,
Xanfil SHMCARMIBHERR, XHEFEHFARMEESL, LETASERIKZ
A PGP B . NBRIMENEEMMARE, HHBERNEES EEB3IRE
BATRCGE, RERNBE, BBHRNBERAR AP MIREIRBE IR,

AHBS5H SRR (Exceptional C++) [Sutter00]—#%, % THEHEN &K, &
BREVESLRMET RHREC++EREMFLLTIR, T#EARZTHIER IR A Bk
fE FPREC++ R H AR RE, HREAXETERRCH+I LR LKA TR, REWH
HEHEZERFETRMEBAEREEHRC++LEHFIRENZR, RENERET
BB RACMMCARRIZRMAREFBHER, HFRERRENZERMAHERRDN,
0 K R 1) R R R AN AT 3 C++ i TH AR R R TR 7. HR A SR % WAL
B, BENTILEN, FrrEREs, FEULRENR, S -SRIBREEA
eNaE&AFHRTFEH,

AEBECHM G HEE. BOBEHRREECMETC++E—1HY (BN
FEZBLMER), A ECMC+HIESEREN RO EREH, ARR
BT REE R 4 & AR, AT WRBF SRR E.
FEEBRRTREELULXNE R AHLXEYN (MWEAFREAREZENZASE
HakBE) CARITAELX EXE, (REEABPBEIXTEREAFER. RES
4K, HARRHSRTER, EARESENERARESNE. BENHIELHE
L FRE A B, m%uﬂﬁﬂ&ﬁ%&%#mmﬁ RRBRARCH+HIE
XSy 2 RIMAME XA,

{i1i% “more”

(More Exceptional C++) M (Exceptional C++) S5 1M 5 4REERi1T. FH4EK
THE—-FEMNELGE. BUE/MEROAFAHARTR, HBxERHRI A D EHHR
RESN, UrEFHmH, EdE—-4sENiEESRA—ERBNENNED, T3
ERETHNE, lnEERe. ZURBURANFREEARS, ARMEBELAN
FEmENELFERE L.

{More Exceptional C++) A A AR ZAE? FHBEMBRIBE R REA Y fE
FC++briefE, BIEHIEMIFMEZER (traits) F1RIWTX (predicates) XHERIEEREAR
FITHE., —B&HIHEHREASMEEMOEEFMRETEARE, XPiFsi
BFERMKREINCEINERE. —IHENHANHRESTREEMLRER
BTIRA, ¥ TREFLFRBAIFEATMNS, XS UUSBLLE LU i ST



vi
BRAEEHRMEEE XL,

BHUK LK FHBEMHERTREMAAEETR E, LHHA “Guru of the Week”
[GotWIRITL 31 ~ 62, LAKIHH C/C++ Users Journal), {Dr. Dobb’s Journal),
€C++ Report) (TAET]) IR HMHIRDESHERLINXE., SENNRAEMELL, &
BB 2 RIEEIT, ¥ 7. RENEFH, Fmdd GERwww.gotw.ca kA H]
SRV ENIR R ) B R AR I 2A R B BT BURRKR .

KBERBEMER

B MRCLER TC++AMMIN, mBRILER, FTLAMN—A 3 m i
HIC++4F B 455 >]. {%Bjarne Stroustrupfy (The C++ Programming Language) (%3
FR) [Stroustrup00]@;Stan LippmanfiJosée Lajoie 4 EH) (C++ Primer) (F3hR)
(Lippman98]ix #E £2 B EE AR R AN EEAUIE R, TR, FLER—FRERIEIEE,
{flfnScott MeyersfJ£2 B E{E (Effective C++) Z7%|[Meyers96][Meyers97], &M%
T 5T #HICDARR [Meyers99]1 5 {E B L A .

WA EEE S

B e — /4 F R ERLLRBI SRR R, HHA — B, TR
ltem##. 1% AR FR IR

PR E SRR R EERRH 4, R, EEFFHERACHMASH
NIAHRIBA LR FEIFMN, B, ROFSRAI RN E - EFRATH R
WL A E R ASHIREE R R, AMNEME (Exceptional C++) LA, kAW
Wl —sem Tlh e, B CRENLLRENERS (SE%) | " M TR-A&KFHMmME,
TREEANA “EAS" & “EEME" RREXS. EEFEEAMTMSE, (EM5KKN
S hr R FREV IR 2L, e FHAAT SN AT E A HRERE—L,
ERM, KEBEERTHRMIERRXEEEFREHEERINANET (MEE) &
RN T ABRR.

R T B ML E REBUF R A, XREF, HIRRSIEBIHEAR . R
HREREIEEAFEENRORAE &K, FOARMIZENE LB R, XFRER
i, BRTHBRRA UNEFT ABLEWARLL “Part 17, “Part 27 F&FKIHAKRZAN
KRB, KGR E R LML, FILIRATLUETE R Z BRI X5THU R
*f (Exceptional C++) WISIF, B AMBkER, RME—EDERR, ML /DA
E AR BUTREL, Rk zib, anfiEike IR E L.

Z5F%E, typename, F|ARHMARE

REBHARTALRBI, EERASARXFNIESHH: MRXBERB O
BHECIHE, XRERERABPRACHRGAIRES BOE, BOEMBEA KA
A AR, BIE A X - JC S8 R PRI REM




viii

EXFE, ALER—TAFEE., FERARBY, MERE—AHFHESH—
A E usingdit &, TEJL TR Sk Z G0 5 — A 61 F 8 B & K76 B Y
usingf 4, XIFQREHARBROER, RRRBEZSEORYT, RHHELE
EHY, FFEMARESE LW, MRTE. WSk TRATZANESRE, T
&40, HEXH, HRBBAELTHRAORAREEBRRER, F&ERUstd:REN
REEAT, —ERITE—A, REKEFERERERELT.

BREHIRS MY, BN REEI— 2 A B S classifi R typename R it i ik,
B E X % 2} EShae LR R, T BARMESORY B 5 REIAL (8 Fclass. Ak Fxt
RIBHIEE, HABAFBRETARORRCH+, RELHTEMtypenameti R
ReclasskHRME ST . M—HBISMRERKIBHOR—1, BFRRRERME
MR AY, PR AT Rclass, RAURWMEHDET.

BRAER B H ERRDE— “TENBF, TMNERTERR. ok, R
R BIE % AR R RSB NRF, JHERENREMIRE. X T AR
FBMRHEEORF, B REENT— LR H LMWL KRS,

BJ5, (X FURLAVEZWR M. fEWebk, RELFHRHZ. RHR, RIS
Bl — A RFHRI . X EG LRI ETIENRE A Web URLBLZ R T R IER
M BHEZS T BRI ZAIBLURLRESEM T, EFERSCERHERL
B LESEZRT . MBRAEFH T Al AMICRRWebsi AR, BRBiTA DM Webih
& (www.gotw.ca) LEJURLEEIX— AH—F A SHIWebdh SR BB BRI, &
RESHEREWR MM EE MR, MREEANRES BN EETEAY,
B TRR, BNERTILRE, ERERHMTME (RBRERRAIXMT
%), BEERFZRAEREFE (MERRFIGIE). TEELR, FHMH
URLHSRIEH B, RAETEX A RIS R R RIS B FRAMAET , 16|

Bis

JEH i M 5 4348 Bjarne Stroustrup, MiffDebbie Lafferty, Tyrrell Albaugh,
Chanda Leary-Coutu, Charles Leddy, Curt Johnsonl )}z Addison-WesleyFBA B3 fth 5%
R, Bt iIhx A E BB, RERSTHILBIMEFILEKE, i
RIS Fn b VNG e X A BRI A B8R 2 T KB,

BH—BAEBREORE, REFSTXHRA. bIMEELRHt TEARE
HE R B R 4R BRI, NS HERRFPXEEETE,
ik, EHH. HRE (HkakBUABRKBIHEGENADNAF) Scott Meyers, Jan
Christiaan van Winkel, Steve Dewhurst, Dennis Mancl, Jim Hyslop, Steve Clamage.
Kevlin Henney, Andrew Koenig, Patrick McKillenPA i — SR AAMBERA. Hhik
FREMEIR, K2MARENDXIE, S5HMExX, RELERES,

Bla, BBRHENR AT, @ﬁﬁhﬁ$%%ﬁﬂﬁ*ukiﬁﬁﬂ H
PEAEER S,

o Herb Sutter
2001467 F 34 3



Foreword

How do you become an expert? The answer is the same in all the fields I've seen:

1. Learn the basics.
2. Study the same material again—but this time, concentrate on the details you didn’t
realize were important the first time around.

If you pick the right details and master them so thoroughly that you no longer have to
think about them, you will be much closer to being an expert. However, until you’ve
become an expert, how do you know which details to pick? You'll learn a lot faster,
and enjoy it more, if someone who’s already been there picks the right details for you.

For example, I once took a photo workshop given by a fine photographer named
Fred Picker. He told us that the only two hard parts of photography were where to put
the camera and when to press the button. He then spent most of the workshop teaching
us technical details about exposure, processing, and printing—details we had to
absorb completely before we could control our photographs well enough for it even to
make sense for us to concentrate on the two “hard” parts.

A particularly entertaining way to learn about the details of C++ programming is
to try to answer questions about C++ programs. For example:

s Do f(a++); and f(a); ++a; have the same effect?

» Can you use an iterator to change the contents of a set?

« Suppose you’'re using a vector named v that has grown to use an uncomfortable
amount of memory. You’d like to clear the vector and return that memory to the
system. Will calling v.clear() do the trick?

You have probably guessed that the answers to these seemingly obvious questions
must be no—otherwise I wouldn’t have asked them—but do you know why the
answers are no? Are you sure?

This book answers these questions and many other thoughtfully chosen questions
about seemingly ordinary programs. There aren’t many other books like it—except, of



course, its predecessor, Exceptional C++. Most C++ books that claim to be
“advanced” are either about specialized topics—which is fine if you want to master
those particular topics, but not if you are trying to look more deeply into everyday
programs—or they use the word “advanced” merely to attract readers.

Once you understand these questions and answers thoroughly, you will no longer
have to think so much about the details when you program; you will be free to concen-
trate on the problems you are really trying to solve. i

Andrew Koemg
June 2001



Preface

The Greek philosopher Socrates taught by asking his students questions—questions
designed to guide them and help them draw conclusions from what they already knew,
and to show them how the things they were learning related to each other and to their
existing knowledge. This method has become so famous that we now call it the
“Socratic method.” From our point of view as students, Socrates’ approach involves
us, makes us think, and helps us relate and apply what we already know to new infor-
mation.

This book takes a page from Socrates, as did its predecessor, Exceptional C++
[Sutter00]. It assumes you’re involved in some aspect of writing production C++ soft-
ware today, and uses a question-answer format to teach you how to make effective use
of standard C++ and its standard library with a particular focus on sound software
engineering in modern C++. Many of the problems are drawn directly. from experi-
ences I and others have encountered while working with production C++ code. The
goal of the questions is to help you draw conclusions from things you already know as
well as things you’ve just learried, and to show how they ifiterrelate. The puzzles will
show how to reason about C++ design and programming issues—some of them com-
mon issues, some not so common; 'some of them plain i 1ssues some more esoteric; and
a couple because, well, just because théy’re fun.

This book is about all aspects of C++. 1 don’t mean to say that it touches on every
detail of C++—that would require many more pages—but rather that it draws from
the wide palette of the C++ language and library features to show how apparently
unrelated items can be used together to synthesizé novel ‘sblitions & common prob-
lems. It also shows how apparently unrelated parts of the palette interrelate on their
own, even when you don’t want them to, and what to do about it. You will find mate-
rial here about templates and namespaces, exceptions and inheritance, solid class
design and design patterns, generic programming and macro magic—and not just as
randomized tidbits, but as cohesive Items showing the interrelationships among all of
these parts of modern C++.



Xii

What's “More?”

More Exceptional C++ continues where Exceptional C++ left off. This book follows
in the tradition of the first: It delivers new material, organized in bite-sized Items and
grouped into themed sections. Readers of the first book will find some familiar section
themes, now including new material, such as exception safety, generic programming,
and memory management techniques. The two books overlap in structure and theme,
not in content.

Where else does More Exceptional C++ differ? This book has a much stronger
emphasis on generic programming and on using the C++ standard library effectively,
including coverage of important techniques such as traits and predicates. Several
Items provide in-depth looks at considerations to keep in mind when using the stan-
dard containers and algorithms; many of these considerations I've not seen covered
elsewhere. There’s a new section and two appendixes that focus on optimization in
single- and multithreaded environments—issues that are now more than ever of prac-
tical consequence for development shops writing production code.

Versions of most Items originally appeared in Internet and magazine columns, par-
ticularly as Guru of the Week [GotW] issues #31 to 62, and as print columns and arti-
cles I've written for C/C++ Users Journal, Dr. Dobb’s Journal, the former C++
Report, and other ‘publications. The material in this book has been significantly
revised, expanded, corrected, and updated since those initial versions, and this book
(along with its de rigueur errata list available at www.gotw.ca) should be treated as the
current and authoritative version of that original material.

What | Assume You Know

I expect that you already know the basics of C++. If you don?, start with a good C++
introduction and overview. Good choices are a classic tome like.Bjame Stroustrup’s
The C++ Programming Language. [Stroustrup00], or Stan Lippman and Josée
Lajoie’s C++ Primer, Third Edition [Lippman98]. Next, be sure to pick up a style
guide such as Scott Meyers’ classic Effective C++ books [Meyers96] [Meyers97]. 1
find the browser-based CD version [Meyers99] convenient and useful.

How to Read This Book

Each Item in this book is presented as a puzzle or problem, Wlth an introductory
header that resembles the following: =~



xiii

Ivem #: Tue Toric oF THis Puzzie Dirricutty: X

The topic tag and difficulty rating gives you a hint of what you’re in for. Note that the
difficulty rating is my subjective guess at how difficult I expect most people will find
each problem, so you may well find that a *“7” problem is easier for you than some “5”
problem. Since writing Exceptional C++, I've regularly received e-mail saying that
“Item #N is easier (or harder) than that!” It’s common for different people to vote
“easier!” and “harder!” for the same Item. Ratings are personal; any Item’s actual dif-
ficulty for you really depends on your knowledge and experience and could be easier
or harder for someone else. In most cases, though, you should find the rating to be a
good rule-of-thumb guide to what to expect.

You might choose to read the whole book front to back; that’s great, but you don’t
have to. You might decide to read all the Items in a section together because you're
particularly interested in that section’s topic; that’s cool, too. Except where there are
what I call a “miniseries” of related problems which you’ll see designated as “Part 1,”
“Part 2,” and so on, the Items are pretty independent, and you should feel free to jump
around, following the many cross-references among the Items in the book, as well as
some references to Exceptional C++. The only guidance I'll offer is that the miniser-
ies are designed to be read consecutively as a group; other than that, the choice is
yours.

Namespaces, Typename, References, and
Other Conventions

I make quite a few recommendations in this book, and I won’t give you guidelines that
tell you to do something I don’t already do myself. That includes what I do in my own
example code throughout this book. I'll also bow to existing practice and modemn
style, even when it really makes no material difference.

On that note, a word about namespaces: In the code examples, if you see a using-
directive at file scope in one example and at function scope in another example a few
pages or Items later, there’s no deeper reason than that’s what felt right and aestheti-
cally pleasing to me for that particular case; for the rationale, turn to Item 40. In the
narrative text itself, I've chosen to qualify standard library names with std:: when I
want to emphasize that it’s the standard facility I'm talking about. Once that’s estab-
lished, I'11 generally switch back to using the unqualified name.

When it comes to declaring template parameters, I sometimes come across people
who think that writing class instead of typename is old-fashioned, even though
there’s no functional difference between the two and the standard itself uses class



Xiv

most everywhere. Purely for style, and to emphasize that this book is about today’s
modern C++, I've switched to using typename instead of class to declare template
parameters. The only exception is one place in Item 33, where I quote directly from
the standard; the standard says class, so I left it in there.

Unless I call something a “complete program,” it’s probably not. Remember that
the code examples are usually just snippets or partial programs and aren’t expected to
compile in isolation. You’ll usually have to provide some obvious scaffolding to make
a complete program out of the snippet shown.

Finally, a word about URLs: On the Web, stuff moves. In particular, stuff I have no
control over moves. That makes it a real pain to publish random Web URLs in a print
book lest they become out of date before the book makes it to the printer’s, never mind
after it’s been sitting on your desk for five years. When I reference other people’s arti-
cles or Web sites in this book, I do it via a URL on my own Web site, www.gotw.ca,
which I can control and which contains just a straight redirect to the real Web page. If
you find that a link printed in this book no longer works, send me e-mail and tell me; ri
update that redirector to point to the new page’s location (if I can find the page again) or
to say that the page no longer exists (i I can’t). Either way, this book’s URLs will stay
up-to-date despite the rigors of print media in an Internet world. Whew.

Acknowledgments

Many thanks to series editor Bjame Stroustrup, and to Debbie Lafferty, Tyrrell
Albaugh, Chanda Leary-Coutu, Charles Leddy, Curt Johnson, and the rest of the
Addison-Wesley team for their assistance and persistence during this project. it's
hard to imagine a better bunch of people to work with, and their enthusiasm and
cooperation has helped make this book everything I'd hoped it would become.

One other group of people deserves thanks and credit, namely the many expert
reviewers who generously offered their insightful comments and savage criticisms
exactly where they were needed. Their efforts have made the text you hold in your
hands that much more complete, more readable, and more useful than it would
otherwise have been. Special thanks to (in the approximate order that I received
their review comments) Scott Meyers, Jan Christiaan van Winkel, Steve Dewhurst,
Dennis Mancl, Jim Hyslop, Steve Clamage, Kevlin Henney, Andfew Koenig, Patrick
McKillen, as well as several anonymous reviewers. The remammg €rrors, omissions,
and shameless puns are mine, not theirs.

Finally, thanks most of all to my family and friends for always bemg there, during
this project and otherwise.

, Herb Sutter
Toronto, June 2001



Contents

Foreword

Preface

Generic Programming and the C++ Standard Library
Item 1: Switching Streams

Item 2: Predicates, Part 1: What remove() Removes
Itern 3: Predicates, Part 2: Matters of State

Item 4: Extensible Templates: Via Inheritance or Traits?
Item 5: Typename

Item 6: Containers, Pointers, and Containers That Aren’t
Item 7: Using Vector and Deque

Item 8: Using Set and Map

Item 9: Equivalent Code?

Item 10: Template Specialization and Overloading

Item 11: Mastermind

'Optimization and Performance
Item 12: Inline
Item 13: Lazy Optimization, Part I: A Plain Old Strmg
Item 14: Lazy Optimization, Part 2: Introducing Laziness
Ttem 15: Lazy Optimization, Part 3: Iterators and References
Item 16: Lazy Optimization, Part 4: Multithreaded Environments

Exception Safety Issues and Techniques

Item 17: Constructor Failures, Part 1: Object Lifetimes

Item 18: Constructor Failures, Part 2: Absorption?

Item 19: Uncaught Exceptions

Ttem 20: An Unmanaged Pointer Problem, Part 1: Parameter Evaluation

11
.19
32
36

53
59

69

83
83
86

103

1158
115
119
126
132



Xvi

Item 21: An Unmanaged Pointer Problem, Part 2: What About auto_ptr?

Item 22: Exception-Safe Class Design, Part 1: Copy Assignment
Item 23: Exception-Safe Class Design, Part 2: Inheritance

Inheritance and Polymorphism

Item 24: Why Multiple Inheritance?

Ttem 25: Emulating Multiple Inheritance

Item 26: Multiple Inheritance and the Siamese Twin Problem
Item 27: (Im)pure Virtual Functions

Item 28: Controlled Polymorphism

Memory and Resource Management

Item 29: Using auto_ptr

Item 30: Smart Pointer Members, Part 1: A Problem with auto_ptr
Item 31: Smart Pointer Members, Part 2: Toward a ValuePtr

Free Functions and Macros
Item 32: Recursive Declarations

Item 33: Simulating Nested Functions -
Item 34: Preprocessor Macros

Item 35: #Definition

Miscellaneous Topics
Item 36: Initialization

Item 37: Forward Declarations
Item 38: Typedef

Itern 39: Namespaces, Part 1: Using-Declarations and Using-Directives

Item 40: Namespaces, Part 2: Migrating to Namespaces
Afterword

Appendix A: Optimizations That Aren’t (in a Multithreaded World)

Appendix B: Test Results for Single-Threaded Versns Multithread-Safe

String Implementations
Bibliography

index

135
141
149

155
155
159
162
167
172

175
175
182
187

201
201
206
215

218

223
223
226
228
21
234

245
247
263

27

. 273



