il Java' (ZEiR)

Hardcore

O’REILLY"

k"% AR 4 Robert Simmons, Jr. &

¥l Java' (EEnsR)
Hardcore Java™

O’REILLY*®

Beijing » Cambridge « Farnham + Kéln » Paris + Sebastopol + Taipei « Tokyo

O'Reilly Media, Inc. 44 & d K 5 oh JR AL 1 JR

FREAKXE HRAE

EHERKE (CIP) ¥iE
ol Java™: / (%) P (Simmons, R.) . — SEEK
— B REEREMAREE, 2005.6

454 3. Hardcore Java™
ISBN 7-5641-0040-0

1.E. DO.f. IJAVAES -BFRIF-%3r IV.TP312
H A B 4518 CIP i+ (2005) % 059126 5

LB RRBURZEVERLA R ID
Bl 10-2005-074 &

©2004 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press, 2005.
Authorized reprint of the original English edition, 2004 O'Reilly Media, Inc., the owner of all rights to publish

and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

3 X & J& & O'Reilly Media, Inc. & ik 2004,

XY IR & dy K R RAE KRR 2005, Jb W PR &9k MAo 4K B A £) h BRAUR 4K B L8 5 B £ —— O'Reilly
Media, Inc.## 7T,

WATH, AFHEAT, KREGEITHR S H SR RFUEITH X FH),

H A/ Bl Java™ (FEIR)

$ 8/ ISBN 7-5641-0040-0

AR/ okt

HEi%if/ Ellie Volckhausen, 3kf@

HREAT/ ZREK%F HIREE

b/ ERMEE2S BB 210096

BN ORI/ R ETRIARRZ R

F A/ 787FEK x 980Fk 16 FA 21.5 Fk
AR %k/ 2005410 AE—AR 2005 4 10 H ¥ —KENRI
Bl %/ 0001-2000 fi}

E #r/ 66.005 (#)

O'Reilly Media, Inc.4 48

O'Reilly Media, Inc. & #5{ F7F UNIX. X. Internet I {e A M ALK E BIREA
S HIMRA T, RFRBEHLHRG A%

M Exl% 4541 (The Whole Internet User's Guide & Catalog) (#4152 B BIRIEA
THHEBEEENS0XH Z—) B GNN (&5 Internet []FFIR AL FIYE) , FE|
WebSite (5 — /S PCHI Web IR %5 284k #4), O'Reilly Media, Inc.—H #hF Internet

R FRH B AT .

£ BERIR#FEY, OReilly Media, Inc. & BB EMHENEBHEE —&—
AR —EHER. SRSFEHEINEBHEFMHELL, O'Reilly Media, Inc. AFHEE
MR EHLE LR, XEH O'Reilly Media, Inc.JEBL T — A HEH A R T Atb th Al
HIHAR 5 &t . O'Reilly Media, Inc. R ERIGBA ALIRIEERF R, ERLTMALR
A EK . OReilly Media, Inc. L H Y £ B EHIEEBE — 1A SR
BHERER. BRER, MIAERESENE, OReilly Media, Inc K 1K I b
HHES . FHA O'Reilly Media, Inc. BB SHENIWREAE, FLLOReilly
Media, Inc. & iy L EEFEF2EF.

tH i 35t BR

BEE TR ARBBEBRMZEA, ARIEAS A — T EARRE R BROFE B HE
PLEARME RS AN ITALAER . Bl iEzh A0 BRI R T E R, 2R,
TR SR B A SE B B Z PR AR AR BT R e, A T B E AR AR A RIESE — iRl
TRRESSEFEA, KigK¥EHRIAEE O'Reilly Meida, Inc KB, #bh
51 %N R R RIS AR RE E R IGS =4 B & 0EE, LR S0E &
PRI 2 i%E . K, RERBHE S RSEINES “FEP” UK, HH R

BANAIRIA L, Br5HERHHREX B A RAT LB AR A G BRI 7 A 5
FE M AE R M TR BB, X EA TR ARN R RE BT LR MR
RE R HE AR

BB ENE 454 104, & Java, Unix/Linux, Python %75 :

o (K% Java) (BZENAR)

e (Jakarta Commons 2 88t H)Y (FEIAR)
e (Weblogic B E)Y (BENK)

o (Java IR GREE FE =Y (REENRR)

e (Linux ZHWIHERF E =M (REIRR)
o (LPI Linux AMEAUBAREEY (RENRR)

* (GNU Make T H &) (FEIKR)

o (XA RFHALEGEY (REIR)

e (%3] Python % “h» (FZENAR)

o CONEIENFBR IR (FEIKR)

Preface

Studying a computer language is a career-long process. Many developers make the
mistake of thinking that they have learned enough. They get caught in the corporate
cycle of build-and-deploy and don’t seek to expand their knowledge. However, we can

hardly blame them for that.

For one, the build-and-deploy cycle is intensive and carries with it a substantial amount
of political pressure: managers don’t want you to spend days reading a book or trying
out code snippets when bugs and deadlines are looming. However, developers should
take the time to experiment and learn more.

When you expand your skills as a developer, there is some initial time investment.
However, this will rapidly pay off in increased productivity and quality. Instead of spending
hundreds of hours debugging, you can implement coding standards that block bugs and
spend a fraction of that time implementing new features. In the end, everyone wins;
your company gets higher-quality code and quicker feature turnaround, and you get to
spend more time playing Frisbee with your dog.

The second problem that the corporate developer has to deal with is that the majority of
computer books are often not appropriate for the intermediate to advanced developer.
When looking at my rather impressive computer book library, much of it from O'Reilly,
I notice that my books tend to fall into two categories: many are introductions to concepts
and most of the others are references to concepts. Although these books are very useful,
there is a distinct lack of books that target the intermediate to advanced programmer.
However, there is one shining exception in my library.

In a dusty corner of my desk is a book I bought several years ago. Secrets of the C++
Masters by Jeff Alger (Academic Press Limited) is absolutely essential for an intermediate
C++ developer. It begins with the assumption that you know the language and then
expands from there. The result is a book that can really transform a developer from the

intermediate level to a true guru.

That is the goal of this book with regards to the Java™ language. Most of the material is
meant to help you avoid many common mistakes made by Java developers. We will also
cover nuances of Java, idiosyncrasies of the JDK, and advanced techniques. With luck,
this book will increase your productivity and your enjoyment of Java development.

Audience

This book is for the intermediate to advanced Java programmer. With that in mind, we
can concentrate on the knowledge and techniques that go into some of the most advanced

Java software available.

Prerequisites and Assumptions

Functional proficiency with Java
I will largely gloss over entire areas of Java. I assume that you understand

JavaBeans™, bound properties, JDBC, and other basics.

Familiarity with basic computer science
I generally won't spend a lot of time on concepts such as scoping, logic operations,
inheritance, and algorithm construction. These and similar concepts will be the
basis for more detailed discussions.
Familiarity with UML
The Unified Modeling Language is the best way to express object-oriented
engineering concepts in a manner that is familiar to all programmers, regardless of
what language they speak. Most of the code diagrams in this book incorporate UML.
Familiarity with the JDK and the virtual machine
You should be familiar with the JDK and with how to compile a program and use
its various tools in the JDK. However, expertise in all packages isn’t necessary.

Typographical Conventions

This book uses the following font conventions:

TItalic
Used for filenames, file extensions, URLs, application names, emphasis, and new

terms when they are first introduced

Constant width
Used for Java class names, functions, variables, components, properties, data types,
events, and snippets of code that appear in the text

Constant width bold
Used for commands you enter at the command line and to highlight new code
inserted in a running example

il | Preface

This icon designates a note, which is an important aside to the nearby text.

@ This icon designates a warning.

Code Samples

The code sample set for this book is massive. Almost every snippet of code from the
book can be found in the downloadable source code (http://www.oreilly.com/catalog/
hardcorejv). However, without a guide, you could get lost quickly when surfing through

the examples.

Regarding the code itself, I will frequently snip out pieces you would need to get the
code to compile and run. Copying this infrastructure code in the book would add
unnecessary bulk and potentially cloud the issue being discussed. Since I assume you
are experienced in Java, I will also assume you know the housekeeping procedures

used to implement pertinent concepts.

One other tactic that I commonly use is to append a number to the name of a class or
method. This is designed to show successive versions of the same class or method. The
goal is to emphasize the development while allowing the user to look up the old version
and play with it if he chooses. For example, you should read Country4 as Country.

Finally, the code samples are very well-documented. However, for brevity’s sake, I will
usually slice out this documentation when presenting code examples. Although I firmly
believe that good Javadoc documentation is important to good development, in this
book such documentation would needlessly increase the page count without adding to

the discussion.

One other thing to note about the examples is that you will often see the comment
//$NON-NLS-1$ imbedded within the code. This is merely a flagging comment that tells
Eclipse not to internationalize a particular String. I have snipped these comments from
the book, as they aren’t relevant to the discussions.

Locating an Example in the Downloadable Code
Each example cited in the book is formatted as:
package oreilly.hcj.review;

public class PointersAndReferences {
public static void someMethod(Vector source) {

Preface | xiii

Vector target = source;
target.add("Swing");
}
}

The emphasized lines show that you can find this code in the package oreilly.hcj.review
and the class PointersAndReferences. However, be aware that the code example cited
may be embedded with other examples that are not relevant to that particular topic. In
fact, 1 frequently combine several examples from a single subject into one class file to
reduce the housekeeping code needed to run the sample. Doing a search on the method
name will quickly locate the cited example.

Categories of Examples

The examples themselves can be divided into three categories. Each of these categories
has a different usage paradigm that you should be aware of.

Syntax checkers

These are methods and snippets that were written solely for the purpose of checking my
syntax in the book. To check my syntax, I leverage the features of Eclipse 3.0M4. However,
be aware that the syntax checker examples will often be mixed with other examples in

the same class file.

Demonstrators

These examples demonstrate a specific concept but are not executed. They often take
the form of methods, which take a certain input and produce a certain output. Mixed in
with these samples, you will occasionally find little main() methods. I use these simply
to test things. If you want to play with them, feel free to do so; however, I do not discuss

them in the book.

Some of the demonstrators are also used to demonstrate compiler errors when using
certain techniques. To use these examples, you can try changing the files and rebuilding
to demonstrate the concept. To compile a single file, there is a special Ant target named
compile example. To use the target, simply pass the filename you want to compile in
the property example:

>ant -Dexample=oreilly/hcj/review/RTTIDemo.java compile_example

Buildfile: build.xml

init:
compile_example:

[javac] Compiling 1 source file to C:\dev\hcj\bin
[javac] C:\dev\hcj\src\oreilly\hcj\review\RTTIDemo.java:54: incompatible types

xiv | Preface

[javac] found : oreilly.hcj.review.RTTIDemo.A
{javac] required: oreilly.hcj.review.RTTIDemo.B

[javac] b = (A)a1; // compiler error: a1 is not a B.

[javac] A

[Javac] C:\dev\hcj\src\oreilly\hcj\review\RTTIDemo.java:55: inconvertible types
[javac] found : oreilly.hcj.review.RTTIDemo.C

[javac] required: oreilly.hcj.review.RTTIDemo.B

[javac] b = (B)c; // compiler error: c is not a B.

[javac] A

[javac] 2 errors

Executables

Unlike demonstrators, executables are intended to be run and the output examined to
demonstrate a concept or prove a point to a skeptical audience. When one of these
programs is introduced, I will show you how to run it using Ant:

>ant -Dexample=oreilly.hcj.review.ObjectIsGod run_example

run_example:
[java] class oreilly.hcj.review.ObjectIsGod$SomeClass --|> class

java.lang.Object
[java] class oreilly.hcj.review.ObjectIsGod$SomeOtherClass --|> class

java.lang.Object

The emphasized line gives you the command needed to run the example after the
prompt (>). The command is identical in most cases. The only difference is the name of
the property example that you pass to the run_example target. While we are on the
subject of running the sample code, there is one thing to note about the output. Since all
of the examples are run with Ant to get the classpath and other housekeeping done, the
actual output from the command will be much longer:

>ant -Dexample=oreilly.hcj.review.ObjectIsGod run_example
Buildfile: build.xml

init:

run_example:
[java] class oreilly.hcj.review.ObjectIsGod$SomeClass --|> class

java.lang.Object .
[java] class oreilly.hcj.review.ObjectIsGod$SomeOtherClass --|> class

java.lang.Object
BUILD SUCCESSFUL
Total time: 1 second

Although this is the actual output, most of it is trivial and common to every use of Ant.
Therefore, I snip out all of this housekeeping for the sake of brevity. The emphasized
lines will be taken out when the run is presented in the book. Therefore, when you run
the examples, be aware that Ant is a bit more verbose than I am.

Preface | xv

Tools

One of the most important skills in professional development is knowing how to use
tools. There are a wide variety of tools available, from the standard text editor and
compiler to full-blown IDEs that do everything for you. Selecting the best tools for the
job will make you a more productive developer.

UML Diagramming

For creating diagrams in UML, I use a product called Magic Draw UML, by No Magic,
Inc. (bttp://www.magicdraw.com/). This tool is, without a doubt, the best professional
UML modeling tool on the market. Rational Rose and Together can’t even touch the
functionality and quality of Magic Draw. I like it so much that I bought a copy of the
Enterprise edition for myself. I highly recommend this product. Although it isn’t free like
other tools I recommend, it is well worth the price.

IDE

The IDE I use is Eclipse 3.0M4, which happens to be the IDE I use professionally as
well. Eclipse simply has the single best development tool on the market. I don’t know
how I could live without my refactoring tools and the other goodies that come with
Eclipse. You can find Eclipse at bttp.//www.eclipse.org/. Also, 1 use many Eclipse plug-
ins to make my job easier. They can be found in the Community section of eclipse.org,
or you can surf the best directory of Eclipse plug-ins at bttp://eclipse-plugins.2y.net/
eclipse/index.jsp.

Out-of-IDE Building

For building outside of my IDE and running examples, I use Apache Ant 1.5, which is
available from b#tp.//ant.apache.org/. Ant is simply the best make program ever invented.
I take my hat off to the folks at Apache.

Logging

I use Jakarta Log4J to do logging in my programs. Log4] is available from btp://
Jakarta.apache.org/log4j/docs/index.btml. In much of the sample code, there is little
logging. However, in production systems, I am a logging fanatic.

L&
-3 For those of you that are curious, I don’t use the JDK 1.4 logging mechanism because
f‘:‘ R it is, in my opinion, vastly inferior to Log4] on many levels.
< A

xvi | Preface

Jakarta Commons

Another set of libraries that I often use in my professional code is the Jakarta Commons
Libraries. These libraries are available from bttp.//jakarta.apache.org/commons/index.btml.
They extend the JDK to include things that Sun either forgot to include or decided not to
include in the JDK. Many of the common tools you will learn about later in the book,
such as ConstantObject, will be submitted to Jakarta Commons after this book is published
to make them more reusable. For now, though, you will find these tools in the Hardcore
Java source code itself. If you haven’t checked out the Commons Libraries, I strongly

advise you to do so.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact O'Reilly for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hardcore Java, by Robert Simmons, Jr.
Copyright 2004 O'Reilly Media, Inc., 0-596-00568-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concering this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

There’s a web page for this book that lists errata, examples, and any additional information.
You can access this page at:

bttp://www.oreilly.com/catalog/bardcorejy

To comment or ask technical questions about this book, send email to:

bookguestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

butp:.//www.oreilly.com

Acknowledgments

1 would like to thank all of the thousands of people who have answered my endless
questions over the years in my quest to become a professional software enginecr. Without
these anonymous thousands on the Internet, the path would have been much more

difficult.

I would also like to thank all of the junior programmers that have worked for me and
kept my eyes open to new ideas. There is nothing like a fresh mind to suggest things
that are radical, untried, and, in the end, brilliant. Certain people leap to mind, such as
Bettina Linssen, now a senior developer. Even though I had considered myself something
of a guru in Java GUI coding, her fresh insight and ideas taught me a thing or two. All
you senior developers out there would be well advised to listen to the ideas of your
junior developers. You never know what they might teach you.

I would also like to extend very special thanks to Marco Kukulies. Marco started his
programming career as a junior developer working for me. He excelled beyond all
expectations and demonstrated that he has that special gift that separates the normal
programmers from the true gurus. Marco is now one of the best senior developers and
architects I know. He has earned my respect, trust, and eternal friendship. Marco reviewed
all of my book from a reader’s perspective and gave me invaluable advice on what

needed to be clarified, expanded on, or removed.

I would also like to thank one of my best friends who has little to do with programming
but has provided endless moral support to keep me energized and working. Although
my friend Sa¢ir Husejnovic isn’t a programmer, and generally doesn’t understand much
of my work, without his and Marco Kukulies’ moral support, this book simply wouldn't
have happened. My deepest respect goes out to these two gentlemen as well as to
Sadir's wife Mirsada, and his three children Aida, Selma, and Amela. Thanks for being a

second family to me!

I would also like to thank my new wife Alma for being the wonderful person she is and
supporting me through all of my efforts to write and maintain this book.

will | Preface

In addition, I would like to thank all of my readers from all over the world who have
submitted errata. Your vigilance has helped refine my work and kept me honest. 1 look
forward to your feedback, concerns and questions.

On the publishing side of things, I would like to thank the artists at O’Reilly who did
such a great job with my innumerable diagrams and drawings, not to mention the
awesome cover. Also, 1 can’t forget everyone who did such a good job publishing,
distributing, and marketing this book. My compliments to you all.

Last, but definitely not least, I would like to thank my editor Brett McLaughlin, who can
be found buried under piles of electronic chapters. Just look for the hand reaching up
frantically for help. His editing prowess has increased the quality of my work to a level
I never knew possible. When I proposed this book to O'Reilly, it was in a much rougher
state than it is now. With many publishers, I would have been mostly on my own.
However, O'Reilly has really worked hard to help me make this book one that I can be
proud of. I have learned a lot, and Brett has truly converted me from a newbie author to

a professional.

Preface | xix

Preface

Table of Contents

Xi

Java in Review 1
Core Concepts 1
Syntax Issues 6
Access Issues 33
Common Mistakes 38
The Final Story 43
Final Constants 43
Final Variables 49
Final Parameters 52
Final Collections 55
Instance-Scoped Variables 59
Final Classes 62
Final Methods 64
Conditional Compilation 65
Using final as a Coding Standard 72
Immutable Types 73
Fundamentals 73
Immutable Problems 79
Immutable or Not 82
Collections 83
Collection Concepts 83
Implementations 87
101

Choosing a Collection Type

Iterating Collections
Collection Gotchas

Exceptional Code

102
104

m

Two Types of Exceptions
When to Use Exceptions
Finally for Closure
Exceptional Traps

Nested Classes

111
118
122
123

130

Inner Classes

Limited-Scope Inner Classes
Static Nested Classes
Double Nested Classes
Nested Classes in Interfaces?
Nested Interfaces

Nested Class Rules

All About Constants

130
135
145
146
148
148
149

151

Substitution Constants
Bit Fields

Option Constants
Constant Objects
Constant Encapsulation

Data Modeling

151
158
162
167
178

182

The Requirements Document
Natural Language Modeling

Aspects of Well-Designed Data Models

Reusable Data Constraints
Persistence

Practical Refiection

The Basics

Reflection and Greater Reflection
Applying Reflection to MutableObject

Performance of Reflection

Reflection + JUnit = Stable Code

183
185
191
200
211

216
217
221
226
232
234

viii

Table of Contents

239

10. Proxies
What Is a Proxy? 239
Two Kinds of Proxies 244
Proxy Gotchas 255
11. References in Four Flavors 256
The Problem 256
Java Reference Concepts 259
The Java Reference Classes 266
Practical Applications 269
A Weak Listener 274
When to Use References 276
12. Tiger:JDK1.5 277
New Language Features 277
Generics 292
Other Improvements in Tiger 314
Index 315
Table of Contents | ix

