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Preface

This book is aimed at the computer-literate person who wishes to find
out about the reality of exploiting the promise of artificial intelligence in
practical, maintainable software systems. It cuts through the hype, so
commonly associated with discussions of artificial intelligence, and
presents the realities, both the promise and the problems, the current
state of the art, and future directions.

It is not another expert systems book. Expert systems are viewed as
just one manifestation of Al in practical software; the issues raised in this
book are much broader. Expert systems are discussed, but as a source of
lessons about the dangers as well as the beneficial possibilities for adding
Al to practical software systems.

In the opening three chapters, we take a long hard look at the
conventional wisdom concerning software engineering - what the goals
are, the rationale behind them, and the realities of the situation. This is
done in part because efforts to engineer Al-software appear to undermine
the accepted foundations of conventional software engineering so we
need to determine how solid the foundations really are; it is also done
because in attempting to engineer Al-software we subject the standard
procedures of software design and development to close scrutiny - our
attempts to build robust and reliable Al-software provides a magnifying
glass on the conventional procedures.

Chapter 4 elaborates on the prototyping schemes described in Chapter
3 and uses this well-accepted methodological strategy to take us on into
the more contentious domain of evolutionary and exploratory software
design and development. This move places us squarely within the general
paradigm (i.e. incremental system development) from whence an
effective model for engineering Al software will emerge. This chapter
concludes with a presentation of the conventional paradigms for software
development which sets the scene for the ‘new paradigms' which
constitute the next chapter.

Chapters 1 to 4 are somewhat polemical in nature, unashamedly so. Is
this appropriate in a text book? Clearly, I believe that it can be, and it is
in this case. As attractive as it might be to provide an unbiased
presentation of how to build Al software, it is just not possible. How best
to build Al software, and even whether it is a reasonable endeavour to
embark on in the first place, are controversial topics. I have attempted to
present the major competing alternatives whenever possible, and 1
haven't tried too hard to hide my personal preferences. I don't think that
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this style of writing is necessarily out of place in a text book. In fact, I
think that it is sorely needed in this particular subject area. The
prevalence of uncritical texts is largely responsible for the current state
of passive acceptance of what should really be hotly debated issues, e.g.
that software construction should mirror conventional engineering
practice, or that the single key component is an abstract specification
which can be complete.

I clearly don't have an exclusive insight into the problems that
permeate the software world; many before me have seriously questioned
elements of the conventional wisdom and offered a possible remedy. In
Chapter 5 I present just a few of the new paradigms that have been
proposed in recent years. This serves to open up the problem, to
emphasize the particularly problematic elements, and to reassure you
that there is no quick fix that I have overlooked.

In Chapter 6 I refocus the narrative and examine specific components
of an effective incremental software design and development paradigm -
a discipline of exploratory programming. None of these component
features appear to be readily available, and some seem to offer little hope
of availability, ready or otherwise. One of the intentions of this chapter is
to show that despite the actual difficulty of realizing these essential
component features, the appearance of impossibility is only an
unfortunate illusion.

The next two chapters present two, very different, sources of reason
for guarded optimism for the engineering of Al software. Chapter 7, on
Machine Learning, reviews several facets of this complex Al subfield that
have had an impact on practical software development. Chapter 8
comprises the main concession to expert systems' technology. As I said
at the very beginning, this is not an expert systems book, but this new
technology cannot be ignored in a book that deals with the design and
development of Al software. However, we do not retell the famous
exploits of the star performers in this field, nor do we examine particular
mechanisms used to achieve expert-level performances. What we do is to
look at how, in general terms, these celebrated Al-software systems were
developed, and equally important why so many of them have failed to
surmount the prototype stage. The lessons are both positive and negative,
and it may be the negative ones that are the most instructive.

The penultimate chapter attempts to draw together many of the lines
of reasoning developed earlier. It attempts to organize these threads of
argument into a more coherent whole - the umbrella of software support
environments. To conclude this chapter two other seemingly desirable
styles of approach to the problems of engineering Al software are
examined.

In the final chapter, Chapter 10, we bring in the “societal' aspects of
the general problem. It is people that build software systems (and that
may be the problem, the advocate of automatic programming might be
tempted to interject), and for any significant system it is definitely
people rather than a single person. Just as software systems are not built
in a personless vacuum, they are seldom used in one either. It is all too
easy for the “technician’ to focus exclusively on the technical problems
and forget that many people are in fact bound up with the problem, and
in many different ways. So this last chapter, in addition to providing a
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summation of all that has gone before, briefly reviews these “societal
problems of software development. For they cannot be temporarily
shelved to be tackled after the technical ones have been solved: they are
part and parcel of the technical problems of engineering Al software -
indeed, of engineering all large-scale software. And to neglect the people
aspect may leave us attempting to solve fictitious, purely technical
problems.

Finally, the embryonic state of the art in the engineering of Al-
software (despite what you might hear to the contrary) means that this is
not, and cannot at the present time be, a ‘manual’ to guide the interested
reader through a detailed procedure for constructing robust and reliable
Al-software products. Although I do present and discuss specific systems
(even a few commercially available systems) whenever possible, the book
is by no means saturated with expositions of the shells, tools or
environments that you can just go out and buy in order to get on with
engineering some Al-software. What you will find (I hope) is a
comprehensive and coherent examination of the many problems that
engineering Al-software involves, as well as a consideration of the
alternative routes to solution of these problems. This book is certainly not
the last word on this important subject, but it may be a good start.
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1
Introduction to Computer Software

1.1 Computers and software systems

Software systems are programs, usually large ones, running on a
computer. Despite several decades of concerted effort, the design,
implementation, and maintenance of such systems is more of an art than
a science. That is to say, the development and maintenance of such
systems are processes dominated by loose guidelines, heuristic principles
and inspirational guesswork, rather than formally defined principles and
well-defined techniques.

The advent of electronic digital computers and the subsequent, almost
miraculous, advances in electronic circuitry technology have provided
mankind with an amazing tool. It has taken humanity into a new age.
Electronic computers have opened up possibilities that were hardly
dreamed of just a few decades ago. We have rockets that can be
accurately guided to the outermost planets and can then take pictures to
send back to us. We have a banking system, involving plastic cards and
remote automatic tellers, that provides us with astounding financial
flexibility, and so on.

In sum, computers have moved us into domains of unbelievable
complexity, and enable us to manage them fairly successfully - most of the
time. In fact computers don't just enable us to deal with situations of far
greater complexity than we could possibly manage without them, they
positively lure us into these domains of excessive complexity. The
modern computer is an exceedingly seductive device: it tempts us with
the promise of its great power, but it also entices the unwary to overstep
the bounds of manageable complexity.

Computer systems designers are well aware of this danger, and that
small specialist sector of society whose role is to construct software
systems has laboured to produce a framework from which reliable,
robust, and maintainable, in a phrase, practically useful software systems
are likely to be forthcoming. This framework is the central feature of the
discipline of software engineering. Observance of the strictures of
software engineering can lead to the production of high-quality software
systems, but there are no guarantees. Software system design and
construction is thus a skilled art (i.e. a blend of artistic flair and technical
skill), but then so is much of science in all domains, despite the
widespread, naive views to the contrary. So what exactly is software
engineering? '



2 Introduction to Computer Software

1.2 An introduction to software engineering

What is software engineering? Well according to one source:

Software engineering is the introduction of formal engineering
principles to the creation and production of software. A scientific or
logical approach replaces the perhaps more traditional unstructured
(or artistic) methods.

DTI, Software Engineering Newsletter, Issue No. 7,1988

This definition is on the right track, but is perhaps more a definition
of some future desired situation than the current reality. And clearly I
have some reservations about the 'scientific' aspirations explicitly
mentioned in the definition. I don't really know what this word means,
but I suspect that it is being (mis)used as a synonym for 'logical'. A
further point of contention that will emerge later when we come to a
consideration of the promise and problems of artificial intelligence (Al)
in practical software systems is that the desire for 'a scientific or logical
approach' may be born of a fundamental misconception, and one that Al
illuminates.

Ince (1989) presents an altogether less slick but far more realistic
characterization of the essence of software engineering.

Software engineering is no different from conventional engineering
disciplines: a software product has to meet cost constraints; the
software engineer relies on results from computer science to carry
out system development; a software system has to carry out certain
functions, for example in a plant monitoring system those of
communicating pressure and tewmnperature readings to plant
operators; and a software developer has to work under sets of
constraints such as budget, project duration, system response time
and program size.

Ince (1989) p. 4

This definition (or description) again tries to account for the
‘engineering’ part of the label, but it avoids the mythological associations
of the term instead of stressing them as in the previous definition.
Engineering is not an exact science; it is not a discipline characterized by
formal techniques; the 'logical approach’ (under any formal interpretation
of 'logical') has no major role in most types of engineering. In fact, much
engineering is saturated with rule-of-thumb procedures which
experience has shown will mostly work, i.e. it is just like much of the
practice of software system building. Precise calculation and use of
formal notations certainly have a role in engineering (as Parnas, 1989, for
example stresses) and they also have a role in software engineering. The
unanswered questions are: do they have central roles and do they have
similar roles within these two disciplines?

Yet, it is undeniable that software systems crash with amazing
regularity whereas bridges and buildings very seldom fail to perform
adequately over long periods of time. This is the crucial difference
between these two disciplines that leads us to think that software
builders have useful lessons to learn from bridge builders, i.e. real
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engineers. But coining the name 'software engineering’ and yet setting a
course for the realms of the logicist does not seem to be a rational way to
capitalize on the success of real engineers.

Can we reasonably expect to be able to exploit engineering know-how?
Are software systems like bridges, or buildings, or complex machinery?
Or is the depth of similarity merely wafer thin? These are difficult
questions and, moreover, ones that will intrude on our deliberations quite
starkly when we bring Al into the picture. So, before launching into an
investigation of software life cycles, I'll indulge in a minor diversion
which will be seen to pay off later on in this text.

1.3 Bridges and buildings versus software systems

Let me tabulate a few differences and similarities between these two sorts
of artefacts. First some similarities:

1. they are both artefacts, i.e. man-made objects;

2. they are both complex objects, i.e. have many interrelated
components;

3. they are both pragmatic objects, i.e. are destined for actual use in
the real world - contrast works of art;

but there are, of course, some significant differences.

bridges and buildings software systems

concrete objects formal-abstraction-based
objects

non-linguistic objects linguistic objects
non-malleable objects malleable objects

simple or relatively precise, complex functionality

unconstrained functionality

Some explanation of this tabulation is required, I suspect. There are
clearly important differences between an elaborate pile of reinforced
concrete and steel (say, a bridge or building) and a computer program
(i.e. a software system). The former is a solid physical object which is
typically difficult and expensive to change. If, for example, you're curious
about the ramifications of two span-supports rather than three, or about
the implications of doubling the thickness of a steel girder, the chances
of being able to satisfy your curiosity on the engineered product are very
slim. The engineer must resort to modelling (i.e. constructing small-
scale models, rather than mathematical models - although this is done as
well) to answer these sorts of questions, or verify predictions of this
nature, as they so often do. Notice that such modelling is an alternative
to formal analysis, and not the preferred alternative - it's more expensive,
slower, and less accurate. At least, it would have all of these less
desirable characteristics if formal analysis were possible, but it usually
isn't except in terms of gross approximations (the mathematical models)
that need to be supported by empirical evidence such as model building
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can provide.

So, because of the fact that engineering is not a formal science, the
notion of modelling, of building prototypes, is heavily exploited. Take
note of the fact that typically the model (or prototype) and the final
engineered product are totally different objects, and they have to be
because the impetus for this type of modelling is to be found in the
nature of the non-malleability of the engineered final product.

Software-engineered products (i.e. programs) are quite different with
respect to malleability. Programs are very easily alterable. Tentative
changes typically cost very little in time, money, or effort. In fact,
programs are much too easily alterable; in my terminology, they are
highly malleable objects. Thus it would seem that the need to build
models in order to explore conjectures, or verify deductions, is absent.
Yet modelling, in the sense of building prototypes, is common practice in
software engineering. "Have the software engineers misunderstood the
nature of their task?" we ask ourselves. I'm very tempted to answer "yes"
to this question, but not with respect to the need for prototype model
building. Why is this?

First, notice that a model of a software system is itself a software
system. This fundamental difference between engineering and software
engineering leads to the conclusion that seemingly similar processes (i.e.
prototype model building) may serve rather different purposes within
these two classes of engineering. At the very least, it should serve as a
warning against over-eagerness in equating the activities of real
engineers and software engineers, even when they seem to be doing
quite similar things.

An important difference between the products of engineering and of
software engineering stems from the precise nature of the abstract
medium used to build programs - it is a linguistic medium. A software
system is a statement in a language. It is not a statement in a natural
language, and it may appear quite alien to the average linguistically
competent, but computationally illiterate, observer. Nevertheless, a
software system is a linguistic statement, and although natural languages
and formal languages have much less in common than their names would
suggest (formal languages: another readily misinterpretable label), there
are some significant similarities. One consequence of this feature of
software engineercd products is that we may be tempted to entertain the
view that programs might also be theories - we don't typically spare much
thought for the suggestion that bridges might be theories (in structural
mechanics?) or even that they might contain their designs (the
blueprints are in there somewhere!). Similarly, software engineers are
typically not tempted too much to view their artefacts as theories, but,
when we later let Al intrude into these deliberations, we'll see that this
odd notion gathers considerable support in some quarters.

A most important consequence of the fact that programs are
composed of formal linguistic structures - i.e. programs are formal
statements- is that they therefore invite being mauled with mechanisms
that can boast the unassailable attribute of mathematical rigour. In
particular, they are constantly subjected to logical massage, of one sort or
another - especially the sorts that hold a promise 'proof of correctness.’

The last-listed point of difference concerns the functionality of
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acceptable objects - i.e. how they behave in the world. You might be
tempted to observe that many engineered objects don't behave, they just
are. The function of a bridge is purely passive: it doesn't act on the
world, it just sits there and allows things to run over it. So it does have
this passive functionality (which is a point of difference with software
systems), but more importantly the functionality is relatively simple -
crudely put, its function is to sit there without breaking or cracking and
let things run over it (not much of an existence I admit, but that's about
the extent of it if you're a bridge).

"Ah, but certain engineered objects, such as steam engines, do have a
complex, active functionality just like software systems." you might
respond. "Yes and no,” I would reply. They do have complex, active
functionality, but it's very different from the functionality of software
systems in several crucial respects. It's less tightly constrained and it's
much more modular - i.e. engineered products have relatively broad
ranges of acceptable functionality, and the overall functionality can be
decomposed into relatively independent components. Thus, a building
must exhibit complex functionality, both active and passive, but to a good
first approximation the adequacy of the doors, doorways, corridors and
stairs in supporting movement throughout the structure is independent
of the adequacy of the central heating system, and of the performance of
the toilets, and of the performance of the roof, etc. The undoubted
complex functionality can be broken down, to a reasonable
approximation, into relatively independent functional components - this
results in a reduction in effective complexity. And, although the doors,
doorways, etc. must conform to building codes, almost any reasonably
large hole in the wall will operate adequately as a door: something pretty
drastic has to happen before it will fail to support the necessary function
of providing access from one space to another. Software systems are
rather different. We strive for modular functionality and achieve it to
varying degrees dependent upon the nature of the problem as well as the
skill of the software engineer. But the medium of programming lends
itself to a hidden and subtle interaction between components that is not
possible (and therefore not a problem) when building with nuts, bolts,
concrete, steel, plastic, etc. There is also a positive inducement to
employ functional cross-links: they can buy software power cheaply in
terms of program size and running time (the important issue of software
power is considered fully later).

Finally, there are usually tight constraints on what functionality is
acceptable: software systems typically operate under precisely defined
functional constraints, if the actual functionality strays from the tight
demands of the system specification then it is likely to be inadequate,
incorrect, even useless in its designated role. Notice that not all (or even
most) of these constraints are explicitly stated; many tight functional
requirements become necessary in order to realize the specified
requirements given the particular implementation strategy selected.
They just emerge as the software engineer strives to develop a correct
computational procedure within the web of constraints on the task.
These are the implicit functional constraints on the particular software
system; they have to be actively searched out and checked for accuracy.

In his polemic on what should be taught in computer science, Dijkstra
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makes the preliminary point that modern computer technology
introduces two "radical novelties". The particularly relevant one here "is
that the automatic computer is our first large-scale digital device" and
consequently "it has, unavoidably, the uncomfortable property that the
smallest possible perturbations - i.e. changes of a single bit - can have the
most drastic consequences.” Whereas most engineered artefacts "are
viewed as analogue devices whose behaviour is, over a large range, a
continuous function of all parameters involved" (Dijkstra, 1989, p. 1400).

In sum, there are a few similarities between bridges and software
systems, but there are many salient differences. So why this general
exhortation to try to build and design programs in the mould successfully
used for bridges? Is it a misguided campaign fuelled by little more than
desperation? What the software people really hope to import into their
discipline is product reliability. But are bridges, buildings, and steam
engines reliable because the technology is well understood, in the sense
of well defined, or because the artefacts are produced as a result of rigid
adherence to a complete and precise specification of desired behaviour?
The answer is not clearly 'Yes'. And yet we find many advocates of "formal
methods"” in the world of software design and development who appear to
subscribe to something like this view. The term "formal methods", when
used in the software world, focuses attention on the notions of abstract
formalized specifications for software, and provable correctness of a
program with respect to such a specification. Gibbins (1990) discusses
the question "What are formal methods?" and quotes with approval from
an Alvey Software Engineering Strategy Document:

"A formal method is a set of rigorous engineering practices which are
generally based on formal systems and which are applied to the
development of engineering products such as software or hardware".
(p. 278)

Here we see again an attempt to roll formal techniques and engineering
practices and products all into one ball, as if it's indisputable that they
meld together well. One question we really ought to ask ourselves is, 'do
they?' Is the use of formal techniques the key to engineering reliability?
Or could it be that well-engineered products are reliable because of a long
tradition that has allowed the heuristics to be refined? More
importantly, are they reliable because their relative functional simplicity
permits the incorporation of redundancy in a similarly simple way? If you
want to be sure that the bridge will function adequately; then, when
you've finished the crude calculations, you double the size of the spanning
girders, pour more concrete into the supporting pillars, etc. What you
don't do is set about trying to prove that your calculations will guarantee
adequate functioning. The functional complexity of software systems
seems to make them unamenable to a similar coarse-grained style of
adding redundancy to safeguard performance requirements - i.e. you can't
just double the number of statements in a program, or beef up the
supporting procedures by adding more of the same statements. So, while
the engineering paradigm in general (i.e. formal approximation bolstered
by added redundancy and a wealth of experience) may be appropriate, it
can be misguided to look too closely and uncritically at the details of
engineering practice, and even worse to aspire to a fiction of supposed



