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Preface to the First Edition
(revised)

This is a textbook on classical mechanics at the intermediate level, but its
main purpose is to serve as an introduction to a new mathematical language
for physics called geomnetric algebra. Mechanics is most commonly formulated
today in terms of the vector algebra developed by the American physicist J.
Willard Gibbs, but for some applications of mechanics the algebra of complex
numbers is more efficient than vector algebra, while in other applications
matrix algebra works better. Geometric algebra integrates all these algebraic
systems into a coherent mathematical language which not only retains the
advantages of each special algebra but possesses powerful new capabilities.

This book covers the fairly standard material for a course on the mechanics
of particles and rigid bodies. However, it will be seen that geometric algebra
brings new insights into the treatment of nearly every topic and produces
simplifications that move the subject quickly to advanced levels. That has
made it possible in this book to carry the treatment of two major topics in
mechanics well beyond the level of other textbooks. A few words are in order
about the unique treatment of these two topics, namely, rotational dynamics
and celestial mechanics.

The spinor theory of rotations and rotational dynamics developed in this
book cannot be formulated without geometric algebra, so a comparable treat-
ment is not to be found in any other book at this time. The relation of the
spinor theory to the matrix theory of rotations developed in conventional
textbooks is completely worked out, so one can readily translate from one
to the other. However, the spinor theory is so superior that the matrix the-
ory is hardly needed except to translate from books that use it. In the first
place, calculations with spinors are demonstrably more efficient than calcula-
tions with matrices. This has practical as well as theoretical importance. For
example, the control of artificial satellites requires continual rotational com-
putations that soon number in the millions. In the second place, spinors are
essential in advanced quantum mechanics. So the utilization of spinors in the
classical theory narrows the gap between the mathematical formulations of
classical and quantum mechanics, making it possible for students to proceed
more rapidly to advanced topics.

Celestial mechanics, along with its modern relative astromechanics, is es-
sential for understanding space flight and the dynamics of the solar system.
Thus, it is essential knowledge for the informed physicist of the space age.
Yet celestial mechanics is scarcely mentioned in the typical undergraduate
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Preface to the Second Edition

The second edition has been expanded by nearly a hundred pages on rela-
tivistic mechanics. The treatment is unique in its exclusive use of geometric
algebra and its detailed treatment of spacetime maps, collisions, motion in
uniform fields and relativistic spin precession. It conforms with Einstein’s
view that Special Relativity is the culmination of developments in classical
mechanics.

The accuracy of the text has been improved by the accumulation of many
corrections over the last decade. I am grateful to the many students and
colleagues who have helped root out errors, as well as the invaluable assis-
tance of Patrick Reany in preparing the manuscript. The second edition, in
particular, has benefited from careful scrutiny by J. L. Jones and Prof. J. Vr-
bik. The most significant corrections are to the perturbation calculations in
Chapter 8. Prof. Vrbik located the error in my calculation of the precession
of the moon’s orbit due to perturbation by the sun (p. 550), a calculation
which vexed Newton and many others since. I am indebted to David Drewer
for calling my attention to D.T. Whiteside’s fascinating account of Newton’s
failure to master the lunar perigee calculation (see Section 8-3). Vrbik has
kindly contributed a more accurate computation to this edition. He has also
extended the spinor perturbation theory of Section 8-4 in a series of published
applications to celestial mechanics (see References). Unfortunately, to make
room for the long relativity chapter, the chapter on Foundations of Mechanics
had to be dropped from the Second Edition. It will be worth expanding at
another time. Indeed, it has already been incorporated in a new appraoch
to physics instruction centered on making and using conceptual models. [For
an update on Modeling Theory, see D. Hestenes, “Modeling Games in the
Newtonian World,” Am. J. Phys. 60, 732-748 (1992).]

When using this book as a mechanics textbook, it is important to move
quickly through Chapters 1 and 2 to the applications in Chapter 3. A thor-
ough study of the topics and problems in Chapter 2 could easily take the
better part of a semester, so that chapter should be used mainly for reference
in a mechanics course. To facilitate identification of those elements of geomet-
ric algebra which are most essential to applications, a Synopsis of Geometric
Algebra has been included in the beginning of this edition.



Synopsis of Geometric Algebra

Generally useful relations and formulas for the geometric algebra G3 of Euclidean
3-space are listed here. Detailed explanations and further results are given in
Chapter 2.

For vectors a, b, ¢, ..., and scalars a, 3, ..., the Euclidean geometric algebra for
any dimension has the following properties

associativity: a(be) = (ab)c at+(b+c)=(a+b)+c
commutivity: ab = ba a+b=b+a
distributivity: a(b +¢) = ab + ac (b+c)a=ba+ca
linearity: a(b+c)=ab+ac=(b+c)a

contraction: a’=aa=|a|?

The geometric product ab is related to the inner product a - b and the outer product
aAb by

ab=a-b+aAnb=b.-a-bAra=2a-b-ba.

For any multivectors A, B, C, ..., the scalar part of their geometric product satisfies
(AB)q=(BA),.

Selectors without a grade subscript select for the scalar part, so that
(--y=(--

Reversion satisfies

(aB)t = Btat, al —a, (Ab)g = (A)t = (A).

The unit righthanded pseudoscalar i satisfies

The vector cross product a x b is implicitly defined by
aAb=i(axb)=iaxb.
Inner and outer products are related by the duality relations

a A (ib)= (a-b)i, a-(ib)=(aAb)i=bxa.
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Every multivector A can be expressed uniquely in the ezpanded form
A=oa+a+ib+if =34 (A,

where the k-vector parts are
(A)g= e, (A), =a, (A), =1b, (A);=1f.

The even part is a quaternion of the form
(A)+:a+ib.

The conjugate A of A is defined by
A= (A1), — (AN _=a—-a—ib+ig

Algebraic Identities:
a-(bAc)=(a-b)c—(a-c)b=a-bc-a-cb=(bxc)xa,
aAbAc=1i[a-(bxc)],
(aAnbAc)-d=(aAb)c-d-(aAc)b-d+(bAc)a-d,

aAbAcAd=0.

For further identites, see Exercise (4.8) on page 71.

Exponential and Trigonometric Functions:
e'® =cosa+isina=cos |a]+iasin|a].

See pages 73, 282 and 661 for more.
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Chapter 1

Origins of Geometric Algebra

There is a tendency among physicists to take mathematics for granted, to
regard the development of mathematics as the business of mathematicians.
However, history shows that most mathematics of use in physics has origins in
successful attacks on physical problems. The advance of physics has gone
hand in hand with the development of a mathematical language to express
and exploit the theory. Mathematics today is an immense and imposing
subject, but there is no reason to suppose that the evolution of a mathemat-
ical language for physics is complete. The task of improving the language of
physics requires intimate knowledge of how the language is to be used and
how it refers to the physical world. so it involves more than mathematics. It is
one of the fundamental tasks of theoretical physics.

This chapter sketches some historical high points in the evolution of
geometric algebra, the mathematical language developed and applied in this
book. It is not supposed to be a balanced historical account. Rather, the aim
is to identify explicit principles for constructing symbolic representations of
geometrical relations. Then we can see how to design a compact and efficient
geometrical language tailored to meet the needs of theoretical physics.

1-1. Geometry as Physics

Euclid's systematic formulation of Greek geometry (in 3(X) BC) was the first
comprehensive theory of the physical world. Earlier attempts to describe the
physical world were hardly more than a jumble of facts and speculations. But
Euclid showed that from a mere handful of simple assumptions about the
nature of physical objects a great variety of remarkable relations can be
deduced. So incisive were the insights of Greek geometry that it provided a
foundation for all subsequent advances in physics. Over the years it has been
extended and reformulated but not changed in any fundamental way.

The next comparable advance in theoretical physics was not consummated
until the publication of Isaac Newton’s Principia in 1687. Newton was fully
aware that geometry is an indispensible component of physics; asserting,



2 Origins of Geometric Algebra
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Fig. 1.1. Congruence of Line Segments.

Euclid’s axioms provide rules which enable one to compare any pair of line
segments. Segments AB and CF can be compared as follows.

First, a line parallel to A B can be drawn through C. And a line parallel to AC can be
drawn through B. The two lines intersect at a point D. The line segment CD is
congruent 10 AB.

Second, a circle with center C can be drawn through D. It intersects the line CF at a
point £. The segment CE is congruent to CD and. by the assumed transitivity of the
relation, congruent to AB.

Third. the point F is either inside. on. or outside the circle. in which cases we say
that the magnitude of CF is respectively, less than. equal to. or greater than the
magnitude of AB.

The procedure just outlined can, of course, be more precisely characterized by a formal
deductive argument. But the point to be made here is that this procedure can be regarded
as a theoretical formulation of basic physical operations involved in measurement.

If AB is regarded as the idealization of a standard stick called a *‘ruler™. the first step
above may be regarded as a description of the translation of the stick to the place CD
without changing its magnitude. Then the second step idealizes the reorientation of the
ruler to place it contiguous to an idealized body CF so that a comparison (third step)
can be made. Further assumptions are needed to supply the ruler with a ““graduated
scale” and so assign a unique magnitude to CF.

. . . the description of right lines and circles. upon which geometry is founded. belongs to
mechanics. Geometry does not teach us to draw these lines. but requires them to be drawn . . .
To describe right hines and circles are problems, but not geometrical problems. The solution of
these problems is required from mechanics and by geometry the use of them. when so solved. 1s
shown; and it is the glory of geometry that from those few principles, brought from without. it is
able to produce so many things. Therefore geomerry is founded in mechanical practice, and is
nothing but that part of universal mechanics which accurately proposes and demonstrates the art of
measuring . . > (italics added)

As Newton avers, geometry is the theory on which the practice of measure-
ment is based. Geometrical figures can be regarded as idealizations of
physical bodies. The theory of congruent figures is the central theme of
geometry, and it provides a theoretical basis for measurement when it is
regarded as an idealized description of the physical operations involved in
classifying physical bodies according to size and shape (Figure 1.1). To put it



Geometry as Physics
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Fig. 1.2. Measurement of the Earth.

The most accurate of the early measurements of the earth’s circumference was
made by Eratosthenes (~200 BC). He observed that at noon on the day of the
summer solstice the sun shone directly down a deep well at Syene. At the same
time at Alexandna. taken to be due north and 5000 stadia (=500 miles) away, the
sun cast a shadow indicating it was 1/50 of a circle from zenith. By the equality of
corresponding angles in the diagram this gives 50 X 500 = 25 000 miies for the
ciccumference of the earth.

another way. the theory of congruence specifies a set of rules to be used for
classifying bodies. Apart from such rules the notions of size and shape have
no meaning.

Greek geometry was certainly not developed with the problem of measure-
ment in mind. Indeed. even the idea of measurement could not be conceived
until geometry had been created. But already in Euchd’s day the Greeks had
carried out an impressive series of applications of geometry. especially to
optics and astronomy (Figure 1.2), and this established a pattern to be
followed in the subsequent development of trigonometry and the practical art
of measurement. With these efforts the notion of an experimental science
began to take shape.

Today. *‘to measure™” means to assign a number. But it was not always so.
Euclid sharply distinguished “‘number™ from “"magnitude”. He associated the
notion of number strictly with the operation of counting, so he recognized
only integers as numbers; even the notion of fractions as numbers had not yet
been invented. For Euchid a magnitude was a line segment. He frequently
represented a whole number n by a line segment which is n times as long as
some other line segment chosen to represent the number 1. But he knew that
the opposite procedure is impossible, namely. that it is impossible to dis-
tinguish all line segments of different length by labeling them with numerals
representing the counting numbers. He was able to prove this by showing the
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side and the diagonal of a square cannot both be whole multiples of a single
unit (Figure 1.3).

The *“‘one way’ correspondence of counting numbers with magnitudes
shows that the latter concept is the more general of the two. With admirable
consistency, Euclid carefully distinguished between the two concepts. This is
born out by the fact that he proves many theorems twice. once for numbers
and once for magnitudes. This rigid distinction between number and magni-
tude proved to be an impetus to progress in some directions. but an impedi-
ment to progress in others.

As 1s well known, even quite elementary problems lead to quadratic
equations with solutions which are not integers or even rational numbers.
Such problems have no solutions at all if only integers are recognized as
numbers. The Hindus and the Arabs resolved this difficulty directly by
generalizing their notion of number. but Euclid sidestepped it cleverly bv
reexpressing problems in arithmetic and algebra as problems in geometry.
Then he solved for line segments instead of for numbers. Thus, he rep-
resented the product x° as a square with a side of magnitude x. In fact. that is
why we use the name “x squared’ today. The product xy was represented by
a rectangle and called the “‘rectangle™ of the two sides. The term “x cubed™
used even today originates from the representation of x* by a cube with side of
magnitude x. But there are no corresponding representations of x* and higher
powers of x in Greek geometry. so the Greek correspondence between
algebra and geometry broke down. This “'breakdown™ impeded mathematical
progress from antiquity until the seventeenth century. and its import is
seldom recognized even today.

Commentators sometimes smugly dismiss Euclid’s practice of turning every

Fig. 1.3. The diagonal of a square is incommensurable with
its side.

This can be proved by showing that its contrary leads to a
contradiction. Supposing, then, that a diagonal is an m-fold
multiple of some basic unit while a side is an n-fold multiple of
the same unit. the Pythagorean Theorem implies that m” =
2n°. This equation shows that the integers m and n can be V! 1
assumed to have no common factor. and also that m’ is even.
But if m® is even, then m is even, and m’ has 4 as a factor.
Since n° = 1/2m”, n* and so n is also even. But the conclusion
that m and n are both even contradicts the assumption that
they do not have a common factor. !

Euclid gave an equivalent proof using geometric methods.

The proof shows that V2 is not a rational number, that is.
not expressible as a ratio of two integers. The Greeks could
represent V2 by a line segment, the diagonal of a unit
square. But they had no numeral to represent it.
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algebra problem into an equivalent geometry problem as an inferior alterna-
tive to modern algebraic methods. But we shall find good reasons to conclude
that. on the contrary. they have failed 1o grasp a subtlety of far-reaching
signtficance in Euclid’s work. The real limitations on Greek mathematics
were set by the failure of the Greeks to develop a simple symbolic language to
express their profound ideas.

1-2. Number and Magnitude

The brilliant flowering of science and mathematcs in ancient Greece was
followed by a long period of scientific stagnation until an explosion of
scientific knowledge in the seventeenth century gave birth to the modern
world. To account for this explosion and its long delay after the impressive
beginnings of science in Greece is one of the great problems of history. The
“great man’ theory implicit in so many textbooks would have us believe that
the explosion resulted from the accidental birth of a cluster of geniuses like
Kepler, Galileo and Newton. “*Humanistic theories™ attribute it to the social.
political and intellectual climate of the Renaissance. stimulated by a rediscov-

rv of the long lost culture of Greece. The invention and exploitation of the

xperimental method is a favorite explanation among philosophers and
wistorians of science. No doubt al! these factors are important, but the most
critical factor is often overlooked. The advances we know as modern science
were not possible until an adequate number system had been created to
express the results of measurement, and until a simple algebraic language had
been invented to express relations among these results. While soctal and
political disorders undoubtedly contributed to the decline of Greek culture.
deficiencies in the mathematical formalism of the Greek science must have
been an increasingly powerful deterrent to every scientific advance and to the
transmission of what had already been learned. The long hiatus between
Greek and Renaissance science is better regarded as a period of incubation
instead of stagnation. For in this period the decimal system of arabic numerals
was invented and algebra slowly developed. It can hardly be an accident that
an explosion of scientific knowledge was ignited just as a comprehensive
algebraic system began to take shape in the sixteenth and seventeenth
centuries.

Though algebra was associated with geometry from its beginnings, René
Descartes was the first to develop it systematically into a geometrical lan-
guage. His first published work on the subject (in 1637) shows how clearly he
had this objective in mind:

“Any problem in geometry can easily be reduced to such terms that a knowledge of the lengths of
certain straight lines is sufficient for its construction. Just as arithmetic consists of only four or five
operations. namely. addition. subtraction. multiplication. division and the extraction of roots,
which may be considered a kind of division. so in geometry. to find required lines it is merely



