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Preface

Dynamic programming, developed by Richard Bellmann, is a powerful method for
solving optimization problems. It has the attractive feature of breaking up a com-
plex optimization problem into a number of simpler problems. The solution of the
simpler problems then leads to the solution of the original problem. Such stage-by-
stage calculations are ideally suited for digital computers, and the global optimum is
always obtained. The drawbacks consisting of the curse of dimensionality and men-
ace of the expanding grid, coupled with interpolation problems, have limited dynamic
programming to solving optimal control problems of very low dimension.

To overcome these limitations of dynamic programming, I suggested ten years ago
to use dynamic programming in an iterative fashion, where the interpolation problem
is eliminated by using the control policy that was optimal for the grid point closest to
the state, and by clustering the grid points closer together around the best value in
an iterative fashion. Such a scheme, however, was computationally not feasible, since
a two-dimensional optimal control problem with a scalar control took over an hour to
solve on the Cray supercomputer. However, a slight change made the computational
procedure feasible. Instead of picking the grid points over a rectangular array, I
generated the grid points by integrating the state equations with different values of
control. For that two-dimensional optimal control problem the computational effort
was reduced by a factor of 100, and the dimensionality of the state vector no longer
mattered. This led to what now is termed iterative dynamic programming. In iterative
fashion, dynamic programming can now be used with very high-dimensional optimal
control problems. The goal of this book is to give a working knowledge of iterative
dynamic programming (IDP), by providing worked out solutions for a wide range of
problems.

A strong background in mathematical techniques and chemical engineering is not
essential for understanding this book, which is aimed at the level of seniors or first-
year graduate students. Although many of the examples are from chemical engineer-
ing, these examples are presented with sufficient background material to make them
generally understandable, so that the optimal control problems will be meaningful.

In Chapter 1, the basic concepts involving mathematical models and solution
of sets of nonlinear algebraic equations are presented. In Chapter 2, two steady-
state optimization procedures that I have found very useful and which provide the
necessary links to ideas pertaining to iterative dynamic programming are presented
and illustrated. In Chapter 3, application of dynamic programming is illustrated with
several examples to give the reader some appreciation of its attractive features. In
Chapter 4, I present the basic ideas underlying iterative dynamic programming.

In Chapter 5, different ways of generating allowable values for control are exam-
ined. In Chapter 6, I examine in a preliminary fashion the effects of the parameters
involved in IDP. Such evaluation of the parameters is continued throughout the book.
In Chapter 7, it is shown that the use of piecewise linear continuous control leads to



great advantages when the control policy is smooth. Comparison of IDP with solu-
tion of the Riccati equation for a quadratic performance index shows the advantages
of IDP. In Chapter 8, it will become obvious to the reader that the optimal control
of time-delay systems presents no real difficulties. In Chapter 9, the use of variable
stage lengths in optimal control problems is introduced to enable accurate switching.
In Chapter 10, I consider the optimal control of singular control problems that are
very difficult to solve by other methods. In Chapter 11, the application of penalty
functions is illustrated for the optimal control of systems where there are state con-
straints present. The time optimal control problem is considered in Chapter 12, and,
in Chapter 13, the optimal control of nonseparable problems is illustrated with two
examples. Since sensitivity is such an important issue, I have discussed that aspect
in some detail in Chapter 14. In Chapter 15, I consider some practical aspects of
applying optimal control to physical systems in practice and outline some areas for
further research.

To enable the reader to gain direct experience with the computations, I have
given listings of typical computer programs in their entirety in the appendix. The
computer programs make the logic discussed in the text easier to follow, and the
programs may be used by the reader to actually run some cases. It is through this
type of direct experience that one gains the most insight into the computational
aspects. Throughout the book I have also given computation times for some runs to
give the reader some idea of what to expect. Whether a particular problem takes a
few seconds or a few hours to run is useful information for the user. I have not made
any special effort to maximize the efficiency of the computer programs. This exercise
is left for the reader.

I am grateful to Professor Rutherford Aris for suggesting that I write this book
and for providing encouragement during the writing process. I am also grateful to
Professor Arpa.d Petho for organizing the annual workshops in Germany and Hungary
to which he has invited me to present the continuing developments of IDP. My thanks
also go to the Natural Sciences and Engineering Council of Canada for supporting
some of this work.

Rein Luus
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element of the 7** row and j** column of A matrix
state coefficient matrix (n x n)

control coefficient matrix (n x m)

constant

cost associated with it* job

diagonal matrix of random numbers between -1 and 1
general function

it* element of the vector f

general vector function

continuous function of state variables introduced for convenience
height

i*h equality constraint

Hamiltonian

performance index

identity matrix

augmented performance index

it" job

length of a time stage

number of control variables

number of allowable values for each control variable chosen
from uniform grid

number of state variables

number of grid points

number of time stages

pass number; raffinate solvent flow rate

sum of squares of deviation

weighting matrix (n x n)

region vector over which allowable values of variables are chosen
number of randomly chosen values for control
weighting matrix (m x m)

shifting term

shifting term corresponding to constraint %

sum of absolute values

time

final time of operation

scalar control

j** element of control vector u

control vector (m x 1)

variable stage length; velocity



x; ith state variable

X state vector (n x 1)
zi it* adjoint variable
z adjoint vector (n x 1)

Greek letters
operator; positive constant

lower bound on control variable u;
constant

upper bound on the control variable u;
region contraction factor by which the region is reduced after every
iteration

a small perturbation

tolerance

region restoration factor

penalty function factor

matrix (n x n)

penalty function factor

delay time

time to execute job 7

integrand of performance index

final value performance index
transition matrix

matrix (n x m)
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Subscripts
f final time
fe calculated final time
i index
in initial value
i index
k index
—_— new value
old previous value
- predicted

Superscripts
* best value obtained from previous iteration

d desired value
J iteration step
& optimal value
© initial value

g pass number
T

transpose
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Chapter 1

Fundamental concepts

1.1 Introduction

Optimization, or optimal control, in the sense to be used in this book, is concerned
with determining the largest value or the smallest value for some criterion of perfor-
mance. For example, if we are dealing with economic benefit, then we would like to
choose the conditions for operating the system so that the economic benefit would
be maximized. If, however, the criterion of performance is chosen to be the cost,
then the system should be operated to minimize the cost. In each case we seek the
operating conditions that yield the extreme value for the performance criterion.

It is obvious that the operating procedure is dictated by the choice of the criterion
of operation. The choice of such criterion is not straightforward, since there are
numerous factors that must be taken into consideration, such as productivity, profit,
cost, environmental impact, reliability, yield of a reactor, quality of product, etc.
We may want to have more than one criterion for optimization. For the present
work, however, we assume that all the objectives can be expressed in terms of an
appropriate scalar criterion of performance which we call performance index, with
the understanding that the optimization results will be dependent on such a choice.
It is also important to express this performance index in terms of the same variables
that are used in the mathematical model of the physical system or process under
consideration.

For the development of the mathematical model of the system, we need some
insight into the behavior of the physical system, and how the variables at our disposal
may be used to change its behavior. Such a relationship may be expressed in terms
of algebraic equations, ordinary differential equations, difference equations, partial
differential equations, integral equations, or combinations of them. The simplest
situation arises, of course, if the model is described in terms of algebraic equations
only. In this case we have a steady-state optimization problem, or we may simply call
the process of finding the extreme value of the performance index optimization. If,
however, the model consists of differential equations, difference equations, or integral

1



