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INTRODUCTION

Let ¢(x, &) be a function defined for the values of x in some given
set of points E, A being a parameter. The set E may be a linear set, or a
p-dimensional set. Let U denote an analytical operation with respect to x;
suppose U (@ (x, X)) and U (@(x, 2) - @(x, X)) have definite values, when
A, X belong to a given set of values. Then, if

U(p(x,d) o(x,4) =0 (@AF1)
#F0 (QA=12),

we call @ (x,A) a system of orthogonal functions with respect to the
operator U.

A system of orthogonal functions is said to form a system of normalized
orthogonal functions when

U((p(x,4)H) =1

for every value of 2 in’the given set.
In the present work, various types of orthogonal functions are considered.
In Chapter I, an account is given of the systems of orthogonal functions
normalized in a finite interval; in this case the operator U means L 2%

A proof of Menchoff and Rademacher’s theorem is given by applying a
theorem of Fubini. The logical equivalence between the convergence theorem
of Rademacher-Menchoff and the summability theorem of Borgen, Kaczmarz,
and Menchoff is established. A theorem on the convergence of a sequence
of partial sums of the series in consideration is demonstrated. All these things
are given in §1, Chapter 1. A discussion of Zygmund’s theorem related to
the Riesz-summability of the series of orthogonal functions is given in §2.
An estimation of Lebesgue’s function is contained in §3.

W. Stekloff gave a proof that a normalized orthogonal system is necessarily
complete, if Parseval’s formula for any polynomial with respect to the system
holds good. Another condition for the completeness of the normalized
orthogonal system has been given by J. Tamarkin. A general and complete
theorem on this direction can be, however, obtained in a simple manner. The
theorems of Stekloff as well as of Tamarkin follow as an immediate con-
sequence. These considerations are given in §4. In §5, I have extended
Menchoff’s inequality.

L.

with #(x) < » into the type of Riesz and Hausdorff.

n(x)

T I
> em Pml(®) dx] <ClgnVAF 2
m=1

1



2 SUMMATION OF THE FOURIER SERIES OF ORTHOGONAL FUNCTIONS

Chapter II is concerned with the convergence problem of the classical
Fourier series and its allied series. A sufficient condition for the existence
of Kronecker’s limit is given. New criteria for the convergence of a Fourier
series are obtained from the point of view of mean-functions. Indeed, I
have proved the following theorem: if @,(z)—s as /=0, and if the function

() = (P() — & P1(2) + - + (— D pa(2)) /2

is summable in (0, n) for a k>1, then the Fourier series of f(x) at the point
x converges to x. If @,(x) is summable in (0, =), but if the limit lim @,(z)
does not exist, then the Fourier series of f(x) at x is not summable (C, @),
where

() = Po(¥) = = {f(x + ) + fx — D),

t 4
qov(t)=%j Pui(dt, v>1.
0

When % is larger, the criterion is better. However, these criteria do not
cover the convergence theorem about the Fourier, series of the function
cos (At~ ++ B + ¢l(¢) ), which is dealt with in §2, Chapter II. In §3, I give a
criterion for the convergence of the allied series of-a Fourier series. The
theorem is parallel to Gergen’s criterion for Fourier serfs, and is an extension
of Misra and Zygmund’s theorem. In §4, three fhecrems concerning the
Cesaro summability of Fourier series of functions belonging to Lipschitz class
are stated; the proofs are given in Chapter V. In §5, a theorem of Priwaloff
is improved.

Chapter III is devoted to theory of absolute convergence of Fourier series.
In §1, 1 give the characteristic property of the functions whose Fourier series
are absolutely convergent. The following theorem is established: the necessary
and sufficient condition for the absolute convergence of a trigonometrical
series is that the series is a Fourier series of a function having the type

=L n@ne+oa,
where .
fi(x) € Lz(—ﬂ': 71') s fl(x + 277) = fl(x) s ’ =1 ’ 25

The absolute convergence of the Fourier series of a function f(z) at a
given point z=x is not a local property of f(¢) at x, but depends on the
behaviour of f(#) in 0<z<2=.I prove in §2 that if both the functions 2¢(#) =
=f(x+2)+f(x—2) and ¢ ¢'(#) are of bounded variation in 0<z<m, then the
Fourier series of f(z) converges absolutely at the point z=x. Extensions of
this theorem are also given in §2. Zygmund proved that if f(#) is of bounded
variation in (—=, =) and belongs to class Lip @, >0, then the Fourier series
of f(#) converges everywhere. This proposition has been extended by other
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writers. I prove in §3 a theorem for the absolute convergence of Fourier
series of bounded variation, which is not a corollary of any of the theorems
mentioned above. In §4, I deduce from the absolute convergence of the
Fourier series of f(¢) at the piint z=x that the function

LD (o) + 1a—) di

is of bounded variation in 0< # < 4 whenever p(?) is absolutely continuous
in (0, 4).

Chapter IV contains an exposition of the theory of summability |C,a|
of positive order @ for a Fourier series at a given point. I prove that if the limit

lim l i(:—) du = X(2)

e—~+0 Je

with ¢(#)=f(x+u)+f(x—u) exists and if ! X(#) is summable in (0, =),
then the Fourier series of f(#) at t=x is summable |C, a] for every @a>2. An
extension of this proposition to the summability |C, a| for @ > m + 1 is also
given, where m denotes. any positive integer.

The summability |C,a|, @ <0, for a Fourier series at a given point is
discussed in Chapter V. A series X u, is summable |C, @] it is summable
IC, B| if B>a. This theorem is well known for @>0. I give a proof for
this theorem under the condition @ > 0, and then apply the theorem to the
Fourier series. Some parts of the theory are based on the summability
|C,a|, <0, of power series.

Chapter VI is devoted to the theory of absolute Cesiro summability of
the allied series of a Fourier series. Additional conditions must be introduced
in the criterion. For example, the boundness of the total variation of the
function

%j;( “ >a¢(u)du (0 <a<1)

t—u

in the interval (0, 7) involves the absolute convergence of the Fourier series
3 A,(x) of f(¢) as shown in §2, Chapter III. But for the allied series £ B,(x)
of £ 4, (x), denoting

xo(t)=§;j;( “ )a¢(u)du 0<a<1),

t—u
the pair of conditions

Xo(£)—X,(0) o 5
¢

_\'" |dXo(2)] < o and r

does not imply the absolute convergence of 2 B,(x).
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Let p be an integer greater than 3, the coeflicients L, (cos y) of the
expansion

_pm2 @
(1—2z cos y+2*) 2?2 = Z L, (cos ) ="
n=0

form an orthogonal system on the hypersphere S:

ittt =1.

[n this case, the operator U means j -+ dw, dw being the surface element of S.

S
E. Kogbetliantz has studied the series of hyperspherical functions on the
ordinary sphere. In Chapter VII, there will be found a discussion of the
Cesaro summability of the series of hyperspherical functions.



CHAPTER I
NORMAL ORTHOGONAL SYSTEM OF FUNCTIONS

§1. Convergence and Summability (C, 1) of
the Series of Orthogonal Functions”

1. Let ¢;, ¢; - beasequence of real numbers and @.(x), @,(x), -
be a sequence of normal orthogonal functions in the interval (0, 1). Relating
to the series

c1 P1(x) + ¢z Pax) o s @

we have the following theorems.
(A) The theorems of Rademacher and Menchoff”:

If the series X (log v)%-¢? is convergent, then the series (1) converges
almost everywhere in the interval (0, 1).

(B) Theorem of Menchoff-Borgen-Kaczmarz”:

If the series 2 (lag log v)*-¢2 is convergent, then the series (1) is (C, 1)
summable almost everywhere in the interval (0,1).

In the appearance, these two theorems state two facts distinct from each
other, yet it can be shown that any one of them is deducible from the other;
Le.

Theorem 1. The theorems (A) and (B) are equivalent.

In fact, both theorems are equivalent to the following theorem:

(C) If the series X (log logv)*-¢] is convergent, then the sequence of
the partial sums

S(x,2), S(x,2%),---, S(x2%),- @)
converges almost everywhere in the interval (0, 1), where

S(x, p) = ¢1 P1(%) + 2 @, (%) + -+, Pp(x) .

This theorem is due to Borgen and Kaczmarz®.

2. The contents of §1 are as follows: For the sake of completeness, we

1) - Ccf. K, K. Chen (1), (2).

2) H, Rademacher (1), D, Menchoff (1).

3) D. Menchoff (4); D. Menchoff (2), Theorems 6;
S. Borgen (l); S. Kaczmarz (1).

4) See Borgen and Kaczmarz, (1) c.
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give in Section I a proof of the theorem (A). The proof seems simpler than
the original works.

Section II, establishes the equivalence of the theorems (A) and (C).

Section II, completes the proof of the equivalence of the theorems (A)
and (B).

Section IIT is concerned with the convergence of partial sums of the
series (1) ; the following theorem is given there:

Theorem 2. If the series 2 ctlogvis convergent, then there exists a
sequence of integers, ki, Ry, 0 5 Ra, -+ such that

lim Rzl g

n—>N0 k’l
for which the sequence of the partial sums
S (x, kl)a S (x5 kZ) ) (x, kn) s %

converges almost everywhere in the interval (0, 1).

I. Proof of the Theorem of Rademacher and Menchoff
3. We begin with the introduction of the notatioris used by Menchoff:
X(s) =2+ 52,
D(x,l,5) = S(x, X(I,s+1)) — S(x, X(1, 5)) ,
‘where m, s, [ are integers satisfying the conditions
'0<l<m, 0<<s <27,

Next, let Z¢; - (log v)? be convergent. We proceed to show the following
facts:

1°. If & be a prescribed positive number, then there is a positive integer
my(x) such that

m 21 [D(%,1,5)]2 <8 for m > mo(x),
s

where x is any point of a set T whose measure |T| =1.

To prove this, we put

Un(x) = : m > (D(x,1,5))? dx,

where 0<x<1.
Then



CHAP. I. NORMAL ORTHOGONAL SYSTEM OF FUNCTIONS 7

Ua) < | 3 (0G4 =

0 s

z(1,s4+1)

e 2 e
=m2 2 =
Ls  x2(l,$)+1
2m+1 2m+l
2
=m> 2 a=m X S
boaman ™41
2m+1
< > ¢? (logv)?,
2™ +1

here and afterwards, logarithm being of the base 2.

Therefore the series
Ul(x) + Uz(x) | s

converges in (0, 1); and by Fubini’s theorem, the series

,,,Z {m HCICY 5

converges almost everywhere in (0, 1).
Consequently, there exists a set of points T whose measure is 1, such that

lim m Z (D(%,1,5))2=0in T .

m— o s

This establishes 1°.
2°. If 2"<n<2™*, then

IS("": ”) - S(xs zm)l <48 for mz= mO(x) s

where x is any point of the set T.
Write

=00+ 01°2 4 8220+ -+ 802+ 0+ 8y 277 F 85027,

where 8;=0 or 1, 8,=1. We have, on writing S;=8;4," 2 0,277,

m—1
S(x, n) - S(x, 2"') = Z 0 D(x: i’ Sl) ¥
i=0
Hence
m=—1 m=—1

(S(x,n) — S(x, 2P < > 82 D (D4, 8))° <
v=0 i=0

<m Y (D(x,1,9)).
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Hence, if x is a point of T, we have
{8(x, n) — S(x,27))* < 6% for m = my(x)
| by observing 1°. ‘This proves 2°.
3°. If 8>0, then there is an integer m,(x) such that
[S(x,2™) — S(x,2™)| <& for m,m' = m(x),

where x is any point of a set R with |R| = L.

For X ¢} is convergent, there exists a function f(x), whose square is
summable in (0, 1), such that

j: @Y= 3 &, j: 1) Pole) dt = c, .

Now consider the series

0

S| G@—seae @<e<n.

m=1

We have

[ s 2y ar < [@—s@ompa= 3 a

2P 4]
and
o ®© © amtl ) m+l ©
Z Zcf=2m263<2 Zcflogv=2cflugv
m=1 am, m=1 2m 41 m=1 2M 4y v=3

which is convergent.

We thus have proved the convergence of the series
> ’ {(f(x)—S(x, 2™) ) dx 0<z<1).
m=1J0

By a similar reasoning as in 1°, we have

lim {f(#)—S(x,2m))* =0

in a set of points R whose measure is 1. The remaining proof is easily seen
from the inequality

ISCe, 27) =S (x, 2) | < [f(®)—S(x, 2™) | + [f(x)—S(x, 2"")]| .

4. Let E be the crosscut of R and 7, ie, E=R- T, then |[E|=1. Let
x€E, ny(x) be the greater of 270 and 2™ then for all pairs of values of
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n and 7’ such that », n' > n,(x) we have

L p < 2mEL 2 L nt < 2EL,

m, m' > max (mo(x), mi(x)).
It follows from

|S(x:”) —S('V:Zm)l <d (3:20),
[S(x,2™) — S(x, 27") | <& (339,
|S(x, 2™") — (2, 2")| <98 (3,2°) s

that

|S(x,n) — S(x,n")| < 35.
Hence the series

c1 P1(®) + ¢z P2(x) + -

converges at x. But x is an arbitrary point of E. Thus the theorem is proved.

II,. Equivalence of (A) and (C)

51 Dexwvation of (C) rrom (A).
Evidently, there is no loss of generality to assume that

am+1

o= > >0 (m=1,23-).

2™ +1

Accordingly we may put

gm+1 '
Gn(®) = 2 0 P2/ Ve -
2™ 41
We have

[l as=0 tor i#i,

[ Wutoras=1 =12,

1]

ie., the sequence ¢,(x), ¢.(x), - forms a normalized orthogonal system

of functions in (0, I).
We have to consider the convergency of the series

y19:1(x) + 72 4’2(‘”) = i
Now

- © om+1

> (log m)? y2 = (log m)* > i< > (log log v)* c
= m v=3

m=1 =1 2 4]
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which is convergent by the hypothesis in the theorem (C). Then it follows
from (A) that the series

gm+l

,.,231 Ym Um(2) = i { > oa ?’u(x)}

m=1 hgmmgg

converges almost everywhere in (0, 1). This is the conclusion of the
theorem (C).

5.2 DerivaTioN oF (A) rroM (C).

To do this, we lay down the following definition. If there exists another
sequence of orthogonal functions ¢;(x), ¢,(x), - such that the addition
sequence

{¢1l(x)} + {gb,,(x)} = q)l(x)a ()bl(w): ?2(’”)} sz(x)s o

forms a sequence of normal orthogonal functions in (0, 1), then the sequence
{®.(x)} is said to be an infinitely incomplete system.

In order to derive the theorem (A) from the theorem (C), we distinguish
two cases:

Case 1. @i(x), @(x), -+ is an infinitely incomplete system.

In this case, there is a sequence of functions

1), Pa(x), -

which forms together with @, (x), @,(x), - a normal orthogonal system.
We set

P,.(x) = Jm(x)
for such 7 which is different from a power of 2, and

¢Zn(x) = tp,,(x) .
The sequence

{2.(x)}
is a normal orthogonal system in (0, 1). Let
Kyw=c¢,, K,=0
for such m which is different feroom a power of 2.

Let us consider the series > K, @,(x). From the convergence of the
1

series

Z cZ (logv)? = Z K (logv)? = Z K? (log log v)?,
v=]1 v=1 v=2
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we see, by (C), that the sequence
27)
[ Kn0u@d| = (5Gem)
m=1

converges almost everywhere in (0, 1). This is nothing but (A) under the
restriction that @,(x), ®,(x), - is infinitely incomplete.

Case 2. @,(x), ®:(x) is not an infinitely incomplete system.

We see that both the systems
{(@2-1(#)} and {Pun(x)}

are infinitely incomplete, and that the convergence of the series
2 2
> o (logv)

implies the convergence of the two series
i ¢3q—1 (log #)* and i ¢z, (logn)?.
n=1 n=1

Then it follows, by case 1, that the two series
2] Can—1 P2m-1(x) and gl €n Pan(®)

converge almost everywhere in (0, 1). So also does the series
1 P1(x) + c2 P2(2) + -

The equivalence of (A) and (C) is established.

1I,. Equivalence of (A) and (B)

6. The equivalence of (A) and (C) being thus established, the
equivalence of (A) and (B) will be demonstrated provided that the
equivalence of (B) and (C) is proved. The equivalence of (B) and (C) may,
however, casily be seen by observing the following two facts:

1°. If X & is convergent, then

lim {(S,a(x) — S(x,2")} =0

almost everywhere in (0, 1), where

S(x,1) + S(x,2) + - + S(x, 7) )

n

Sa(x) =
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The proof is contained in Borgen’s paper”.

2°. If 2 ¢l is convergent and {S(x, 27) ) is convergent almost everywhere
in (0, 1), then the sequence '

{8a()}

converges almost everywhere in (0, 1); i.e., the series (1) is summable (C, 1)
almost everywhere in (0, 1).

The proof is also contained in Borgen’s paper?.

III. Convergence of the Sequence of Partial Sums
of the Series 2 ¢y Pu(x)

7. Borgen” proved that if 3¢ (log log v)? is convergent and &;, k,, -
is a sequence of integers such that

L>a>1 v=12-),
_kv—l

then the sequence

S(x’ kl), S(xs kZ)’ = {S(x’ ku)}

converges almost everywhere in (0, 1). But if X ¢2 log v is convergent, then
there is a sequence £, &, -+ such that

Ry
kv—l

—1 as v—

for which the sequence

S(x’ kl), S(x: kZ); oo

converges almost everywhere in (0, 1),
In fact, if we set
Rvy = [vlogv] +1

then, as is easily shown, we have

kv+1 I f

Ry ’

Without loss of generality, we can assume that

kv+1—ku—>°°, as v—» 00,

5) The proof of ‘Hilfassatz III’ contains the above result,

6) The proof of ‘Satz I’ involves this. Also S. Kaczmarz has already shown the theorem: If
X ¢, is convergent, then the convergence of {S (x,27) } is necessary and sufficient for the (C, 1)-
summability of ¥ ¢, @, (x), (almost everywhere in (0, 1)).—S. Kaczmarz (2),

7) L. ‘Satz I,



