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Preface

The integration of top-down lithographic techniques with synthetic organic
and inorganic technologies is a key challenge for the development of effective
nanoscale devices. In terms of assembly, nanoparticles provide an excellent tool
for bridging the gap between the resolution of electron beam lithography (~60
nm) and the molecular level. Nanoparticles possess an array of unique properties
associated with their core materials, including distinctive magnetic, photonic and
electronic behavior. This behavior can be controlled and applied through
monolayer functionalization and assembly strategies, making nanoparticles both
scaffolds and building blocks for nanotechnology.

The diverse structures and properties of nanoparticles makes them useful
tools for both fundamental studies and pragmatic applications in a range of
disciplines. This volume is intended to provide an integrated overview of the
synthesis and assembly of nanoparticles, and their applications in chemistry,
biology, and materials science.

The first three chapters focus on the creation and intrinsic properties of
nanoparticles, covering some of the myriad core materials and shapes that have
been created. The remaining chapters of the book discuss the assembly of
nanoparticles, and applications of both discrete particles and particle assemblies
in a wide range of fields, including device and sensor fabrication, catalysis,
biology, and nanoscale electronic and magnetic systems.

Of course, no single book can hope to cover the diverse array of research
encompassed by researchers making and applying nanoparticles. I hope,
however, that this book will prove useful for whetting the imagination of
researchers currently pursuing nanotechnology, as well as those contemplating
joining this uniquely multidisciplinary field.

Vincent M. Rotello

Department of Chemistry
University of Massachusetts, Amherst MA 01003
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Synthesis and Applications of
Magnetic Nanoparticles

Andrew K. Boal
Sandia National Labratories, Albuquerque, NM, USA

1.1. INTRODUCTION

Magnetic nanoparticles (MNPs) have been the focus of an increasing amount
of the recent literature, which has chronicled research into both the fabrication
and applications of MNPs. The explosion of research in this area is driven by the
extensive technological applications of MNPs which includes single-bit elements
in high-density magnetic data storage arrays, magneto-optical switches, and
novel photoluminescent materials. In biomedicine, MNPs serve as contrast
enhancement agents for Magnetic Resonance Imaging, selective probes for
bimolecular interactions, and cell sorters. Nanoparticles of magnetic metals are
also finding applications as catalysts, nucleators for the growth of high-aspect-
ratio nanomaterials, and toxic waste remediation. Methodologies for the synthesis
of MNPs are being developed by scientists working in fields spanning Biology,
Chemistry, and Materials Science. In the last decade, these efforts have provided
access to nanoscale magnetic materials ranging from inorganic metal clusters to
custom-built Single Molecule Magnets. The goal of this chapter is to provide
broad overviews of both the appllcatlons of MNPs and the synthetic
methodologies used in their production.'”



2 CHAPTER 1
1.2.  APPLICATIONS OF MAGNETIC NANOPARTICLES

High-density magnetic data storage arrays provide a major technological
driving force for the exploration of MNPs. If a reliable data storage system based
on a single 5 nm MNP acting as an individual bit of information could be created,
storage densities of 10 Gbit/cm® would be possible.” MNPs have also been
demonstrated to be functional elements in magneto-optical switches,’ sensors
based on Giant Magnetoresistance,” and magnetically controllable Single
Electron Transistor devices® or photonic crystals.” One of the first stages in the
development these MNP-based materials is the creation of ordered 2- and 3-
dimensional arrays of MNPs.* Two dimensional arrays are typically fabricated by
the slow evaporation of highly monodisperse MNP solutions onto a substrate.’
Structural control can be achieved by the application of a magnetic field'® or
patterning using dip-pen nanolithography.'' Three dimensional nanoparticle
assemblies with complex structures can also be fabricated by the slow
evaporation technique in the presence of an applied magnetic field."> These
technological applications are all in addition to the numerous known and
developed applications of aqueous suspensions of MNPs (ferrofluids)."

Doping magnetic ions into semiconductors to produce Dilute Magnetic
Semiconductors (DMS) has long been used to alter the electronic and optical
properties of the parent materials.'* Similarly, DMS nanoparticles can be
produced by including metal ions in reactions used to prepare semiconductor
nanoparticles.”” DMS nanoparticles have applications in the fabrication of novel
optical materials. For example, both Ni:ZnS and Co:ZnS DMS nanoparticles
display strong photoluminescent emission of green light.'® Additionally, the
electronic properties of DMS materials are responsive to both light and magnetic
fields, making them useful in the fabrication of magneto-optical switches.'’

MNPs are also finding a multitude of biomedical applications, the most
prevalent of which is Magnetic Resonance Imaging (MRI) contrast agents.'®
Recent work has involved the development of bioconjugated MNPs," which
facilitate specific targeting of these MRI probes to brain tumors>’ and enabled
real-time monitoring of both gene expression’' and T-cell** or progenitor cell”
migration. Bioconjugate MNPs are also useful as probes for in vitro detection of
bimolecular interactions using a variety of techniques, including the detection of
DNA hybridization by NMR.** Antigen-antibody interactions can be detected
using either Superconducting Quantum Interference Device (SQUID)” or
magnetically induced birefringence’® based immunoassays. MNPs have also been
utilized in the purification of both cells’” and biomacromolecules™ from complex
mixtures. In purification applications, the MNP is modified so as to specifically
bind the target cell or molecule of interest and the complex is then magnetically
purified from undesired components.

MNPs are also used as highly active catalysts which has long been
demonstrated by the use of finely divided metals in several reactions.”” Recent
synthetic advances have resulted in the preparation of catalysts based on smaller
particles or matrix supported nanoparticle catalysts. Smaller particles increase the
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surface-to-area ratio and therefore the catalytic activity while supported
nanopartlcle catalyst materials show enhanced stability and broader scope of
applications.” Electro-oxidation of methanol for fuel cells applications can be
catalyzed by NiPt, PtRuNi,’' and CoPt*” nanoparticles. Similarly, LiCoO,” and
leCul_yFeyOZ34 nanoparticles have been evaluated as potential components of
lithium-ion batteries. Finally, recent reports have described the application of Co
nanoparticles in the Pauson-Khand reaction.™

MNPs can nucleate and control the growth of high aspect ratio
nanomaterials such as carbon nanotubes (CNTs). Here, a substrate is coated with
nanoparticles and CNTs are then grown using a variety of chemical vapor
deposmon (CVD) processes. Nanoparticles of Fe, Ni, Co,’® FeMo,*” and iron
carbides® have all been shown to be active in this process. In the case of Fe
nanoparticles, the diameter of the nucleating nanoparticle has been shown to
control the diameter of the resulting CNT over the range of 3-13 nm.” Iron
nanoparticles have also been used to nucleate the growth of iron nanorods.*’

Finally, iron nanoparticles have also been used as toxic waste
remediators. Bulk iron is an established waste remediator as, in aqueous
solutions, it acts as a reducing agent capable of decomposing a variety of toxic
chemicals in groundwater including halogenated alkanes*' and nitroaromatics.*
Owing to their higher surface-to-area ratio, nanoparticles are more efficient at
waste remediation, as demonstrated for FePd nanoparticles used to decompose
halogenated alkanes and Fe nanoparticles acting to remove Cr*" and Pb*" from
aqueous solutions.*!

1.3. SYNTHESIS OF SINGLE METAL MNPS

Solution phase synthesis of transition metal nanoparticles is
accomplished via two generic pathways: the reduction of a metal salt or
decomposition of an organometallic complex. Two of the largest concerns
regarding MNP synthesis are the ability to both tune the size of the nanoparticle
and control particle size dispersity. These concerns are addressed in a number of
ways and are dependent on the synthetic methodology employed. In the case of
metal ion reduction, successful strategies include conducting the reaction in a
confined environment or in the presence of a suitable capping ligand. For the case
of organometallic decomposition, size control and dispersity is usually attained
by conducting the reactions at high temperature, which ensures a high rate of
nanoparticle nucleation and growth. Capping ligands, which form a self-
assembled monolayer of the nanoparticle, can also be used to mediate particle
growth.

Water-in-oil microemulsions (w/o microemulsions) and inverse micelles
are often employed as nanoconfined reactors in the synthesis of many varieties of
nanoparticles.” For both, the size of the confined space can be defined by
varying the amounts of both surfactant and solvent, which allows for direct
control over the size of the resulting MNPs. Typically, MNP preparation in w/o



4 CHAPTER 1

microemulsions is achieved by mixing an emulsion containing metal salts with an
emulsion containing a suitable reducing agent (e.g. NaBH, or N,H,). This
produces surfactant capped metal nanoparticles with diameters of less than 10 nm
(Scheme 1.1). Similarly, aqueous solutions of reducing agents can be added to
inverse micellar solutions of metal salts in nonpolar solvents. Using these
methodologies, MNPs of Fe,* Co," and Ni* have been prepared.

W‘E

Br
§( , etc

SCHEME 1.1. Example of the production of Ni MNPs by H,NNH, reduction of NiCl, in a w/o microemulsion
system.

Co MNPs have also been produced by the reducing CoCl, with LiBEt;H
in dioctyl ether containing oleic acid and trialkyl phosphines. In this reaction, ¢-
Co MNPs are produced and the size is controlled by varying the alkyl groups on
the trialkyl phosphine.” Gd MNPs, the only present example of a lanthanide
metal nanoparticle produced by a solution route, can be produced by alkalide
reduction of GdCl; under strictly anaerobic and anhydrous conditions.™

Thermal decomposition of organometallic complexes is of great interest
as many of the synthetic procedures produce highly monodisperse nanoparticles.
Metal carbonyl complexes represent the most common organometallic precursor
for this reaction Fe MNPs, for example, are produced by the thermal
decomposition of Fe(CO)s in trioctylphosphine oxide (TOPO) solutions
containing oleic acid, which acts to passivate the product nanoparticle (Scheme
1.2a).* Polymer-coated Fe MNPs have also been prepared by thermal
decomposition of Fe(CO)s in the presence of poly(styrene) functionalized with
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tetraethylenepentamine.”’ Thermal decomposition of Co,(CO)g in hot toluene
solutions containing TOPO produces e-Co MNPs.** Similar reactions carried out
in o-dichlorobenzene in the presence of various ligands allows for MNP
morphological control (Scheme 1.2b).” Co MNPs embedded in polymers have
been prepared both by H, promoted decomposition of Co(n3-CgH,3)(COD) in
poly(vinylpyrrolidone) (PVP)™ or by charging either crosslinked poly(styrene)®
or poly(dimethylsiloxane)-block-poly((3-cyannopropyl)methylsiloxane)-block-
poly(dimethylsiloxane)*® with Co,(CO)s followed by heating. Ni MNPs can be
fabricated by H, induced decomposition of Ni(COD),. By varying the ligands
present in the decomposition reaction, the morphology of the resulting Ni MNPs
can be varied.”” Ni MNPs can also be prepared in PVP matrices either by the
direct decomposition of Ni(COD), at room temperature by PVP*® or by H,
promoted decomposition.”

(a)
oleic acid, TOPO

Fe(CO
( )5 340°C
(b) Co2(CO)g
oleic acid, alkylamine,
TOPO, 182°C 182°C
15 seconds
oleic acid,
TOPO, 182°C
1800 seconds

v

rods spheres disks
SCHEME 1.2. (a) Thermal decomposition of Fe(CO)s in the presence of oleic acid and TOPO to produce Fe

MNPs and (b) use of varying ligands to produce Co MNPs with spherical, rod, and disk morphologies from
Coy(CO)s

Sonochemical decomposition of organometallic complexes has also been
used to produce MNPs. Sonication of Fe(CO)s either as a neat liquid or in a
noncoordinating, high boiling solvent such as decilin leads to the formation of
agglomerates of polydisperse Fe MNPs.”” Coordinating ligands or polymers that
can attach to the MNP surface prevents agglomeration and allow for better
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control over particle size dispersity.®' Sonication has also be used to produce Ni
MNPs by the decomposition of Ni(COD),.*

1.4. SYNTHESIS OF ALLOYED METAL NANOPARTICLES

MNPs of alloyed transition metals can be prepared by reactions in which
two metal precursors are decomposed in tandem, producing solid solution
nanoparticles, or sequentially to give core-shell nanoparticles.> The most heavily
studied alloy MNPs are FePt and CoPt, both of which are of high interest for
applications in data storage. FePt MNPs are prepared by the simultaneous
thermal decomposition of Fe(CO)s to Fe and the polyol reduction of Pt(acac), by
1,2-dodecanediol to Pt at 250°C in solutions containing oleic acid and oleyl
amine (Scheme 1.3).* This process yields monodisperse, solid solution FePt
MNPs coated by a monolayer of oleyl amine and oleic acid that can be
exchanged for shorter or longer acids or amines after synthesis. The composition
of the MNP core can be controlled by varying the relative concentrations of the
iron and platinum precursors. Further, the diameter of these MNPs can be
adjusted between 3-10 nm.

Pt(acac oleic acid, oleyl amine
@cack  oeoc
+ >
Fe(CO)s then 1,2-dodecanediol

SCHEME 1.3. Synthesis of solid solution FePt MNPs.

Variations on the tandem organometallic decomposition/polyol reduction
method allows for the synthesis of MNPs of other alloys of iron. Including either
AgAc or Co(acac), in the reaction produces [Fe4gPt5]]ggAg,365 or FeXCOyPt.oo_x_yf’"
nanoparticles, respectively. Pd(acac), can be used instead of Pt(acac), to produce
MNPs of FePd.®” The simultaneous decomposition of Fe(CO)s and Mo(CO); in
the presence of bis-2-ethylhexylamine and octanoic acid in refluxing dioctyl ether
produces FeMo MNPs whose size can be varied between 3-11 nm by changing
the amount of acid in the reaction.”” FeAu MNPs can be prepared by reducing
w/o micelles of FeSO, and HAuCl, with NaBH,. This procedure has been used to
prepare both Fe.oeAug,e® and AucoreFegneiAugen®” MNPs by a stepwise reduction
process where each successive step uses larger diameter water droplets to yield
the alloyed particle (Scheme 1.4). Similarly, FeCu nanoparticles can be prepared
by the simultaneous reduction of Fe’" and Cu’’ in inverse micelles producing
MNPs of various FeCu ratios.”
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SCHEME 1.4. Synthesis of FecoreAug,en MNPs.

CoPt MNPs can be fabricated by several different routes. Simultaneous
reaction of CO(T]3-C8H13)(7]4-C3H|2) and Pty(dba); with H, in the presence of PVP
leads to the production of 1-1.5 nm diameter, polymer coated MNPs.”' The
composition of these nanoparticles can be varied between CosPt;, Co,Pt;, and
Co,Pt; by changing the ratio of the inorganic precursors subjected to the reaction.
Simultaneous decomposition of Co,(CO)s and reduction of Pt(acac), in the
presence of 1-adamantanecarboxylic acid and various coordinating solvents
allows for the synthesis of CoPt; MNPs with diameters controllable between 1.5-
7.2 nm.” Likewise, simultaneous decomposition of Co,(CO)s and either
Rh(acac)(COD) or Sm(acac); in hot surfactants produces solid solution RhCo” or
SmCo’* MNPs. The simultaneous reduction of PtCI(,z' and Co”" ions by hydrazine
in w/o microemulsions leads to the formation of 3-4 nm diameter CoPt



