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Preface

In the last several decades, there has been great progress on the subject of
hydrodynamic stability mainly due to mathematical modeling and numerical simulation
efforts which were based on various analytical and computational methods. The subject of
hydrodynamic stability is of fundamental importance in the mechanics of fluids and its
applications in various fields of engineering, geophysical, astrophysical and environmental
sciences. An important problem that hydrodynamic stability is concerned is that of
instabilities that can take place and their transition sequences towards turbulence regime.

The initial motivation for preparing the present volume was the interest expressed by
several invited speakers at the 14th World Congress of the International Association for
Mathematics and Computers in Simulation (IMACS) (Atlanta, GA, July 1994) who
participated in special sessions on hydrodynamic stability one of which was organized by
the present editor. As a latest research volume on the subject of hydrodynamic stability,
this book has developed from manuscripts submitted by internationally recognized applied
mathematicians and scientists who have made important contributions to the mathematical
modeling and simulation aspects of hydrodynamic stability. This book brings together
current developments in the theory and applications of hydrodynamic stability, which were
due to the mathematical modeling and simulation efforts in the subject, and it is hoped that
they provide sufficient stimulation and directions for future research investigations on the
subject.

The chapters in this book are placed in a sequence based on the alphabetical order of the
main authors' last name. The first chapter, by A. Bottaro and P. Luchini, presents
development of a mathematical model for the problem of the stability of the disturbances for
the Gortler vortices. Chapter two, by F.H. Busse and R.M. Clever, present a general
outline of the bifurcation type approach towards an understanding of complex flows. The
evolution from simple to complex flows is studied by a sequence of mathematical models
and simulations through the Galerkin procedure. Chapter three, by A.L. Frenkel and
K. Indireshkumar, discusses the evolution equations and the associated theories for wavy
flows of viscous films on solid surfaces. Both perturbation analysis and numerical
simulations are employed and some unresolved questions are posed and discussed.
Chapter four, by L. Hadji, considers the influence of thermal Soret diffusion on the
instabilities in a dilute binary mixture during solidification process. The issue of
constitutional super cooling and the importance of the coupling between solidification and
Soret-driven flow are analyzed and discussed. Chapter five, by W.R.C. Phillips, reviewes
rotational waves and their nonlinear interaction with shear flows. The interaction process is
described through a Lagrangian formulation and a theory. Chapter six, by D.N. Riahi,
reviews nonlinear stability analysis and modeling for convective flows, and the latest
research results for several convective flow problems are presented. Chapter seven, by
D.N. Riahi, reviews primary hydrodynamic instabilities and their mathematical modeling
and simulation for several shear flow cases, and the latest research results for these shear
flows are presented. Chapter eight, by A. Zebib, A. Bottaro and B.G.B. Klingmann,
determines spatial development of longitudinal vortices through modeling and simulation,
and various results are presented for a range of rotation numbers.

I would like to thank the authors for their effective contributions which demonstrate the
power of mathematical modeling and simulation for the advancement of the research in the
subject of hydrodynamic stability. I also would like to thank Ms. Kim Tan, editor at World
Scientific Publishing Company, Inc., for her help in publishing this monograph.

Daniel N. Riahi
University of Illinois at Urbana-Champaign
Urbana, Illinois
September 1995
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THE LINEAR STABILITY OF GORTLER VORTICES REVISITED

ALESSANDRO BOTTARO
IMHEF - DGM
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

and

PAOLO LUCHINI
Dipartimento di Ingegneria Aerospaziale
Politecnico di Milano
Via Golgi 40, 20133 Milano, Italy

ABSTRACT

The linear stability theory for the Gortler vortex problem is reexamined. Because of the
non-parallelism of the base flow, a set of parabolic, partial differential equations rules the
stability of the disturbances. A unique solution is not available for this problem since each
different initial condition provides a different, equally valid, answer. However, by
exploiting the fact that two streamwise scales appear far enough downstream of the
leading edge of the curved plate, an asymptotic formulation is constructed which allows to
consistently take into account non-parallel effects in the evaluation of the total
amplification factor of the instability.

1. Introduction

Gortler vortices (or Gortler-like vortices) occur in a vast variety of flow
configurations, in technical applications and in nature. They are streamwise-oriented
vortices, with the fluid slowly spiralling around an axis, of dimensions comparable to
those of the local boundary layer thickness. Although Gértler vortices can occur in both
laminar and turbulent environments, the discussion is here limited to the primary Gortler
instability, where a laminar boundary layer developing along a curved surface becomes
destabilized by the action of centrifugal forces, and near-wall streamwise vortices are
amplified. The basic flow situation is sketched in figure 1. The flow developing along a
curved passage follows a curvilinear trajectory in the plane of the figure and is subject to
the action of centrifugal forces which tend to deviate the fluid particles from their
trajectories. The instability mechanism is of inviscid nature and arises from a local
disequilibrium between the centrifugal force term pU%/r and the restoring normal pressure
gradient dp/dr. The new stable flow that ensues is sketched in figure 2.



restoring normal
pressure gradient

centrifugal force

Figure 1. Curved boundary layer. This flow is susceptible to an instability when the centrifugal
force differs from the restoring normal pressure gradient. The instability results in the
formation of streamwise vortices.

Although the vortices thus created can themselves be unstable to other kinds of
instabilities (secondary instabilities), the scope of the present paper is to outline the linear
theory of the primary instability alone.

Since Gértler's original theory!, which provided a theoretical framework for the
instability developing along a curved boundary layer, much work has been devoted toward
the understanding of what became known as "Gértler vortices". A comprehensive review
of the topic is provided by Saric2. Here it suffices to say that until Hall3 only local linear
stability studies were carried out, in which the streamwise growth of the basic boundary
layer and the convective nature of the instability were ignored. Later, it became clear that
an appropriate description of the vortices required consideration of non-parallel effects.

2. Mathematical description of the primary instability

We consider the flow over a concave surface of constant radius of curvature R.
The dimensional Navier-Stokes and continuity equations in cylindrical coordinates (r, 8, z)
and corresponding velocity components (v, u, w) are the starting point of the analysis:

(V) +ug+rw; =0, (1.1)

ut+vu,+u +wuz+—+—=v[V2 (1.2)

2V9 u ]
p 12



Figure 2. Sketch of particle paths and of secondary flow in a cross-section perpendicular to a curved
surface.
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There is experimental and theoretical evidence (Herron4, Swearingen and
Blackwelder5) that the primary instability is stationary. Hence we can safely drop the
time-dependent terms. Furthermore, we can express the equations in cartesian-like
coordinates by the introduction of

x=R0O, 2.1

y=R-r, @2)



together with a change in sign of the vertical velocity v. We also introduce the curvature
of the wall k = R-1. The governing equations become:

-11_(—1\('y+vy+11_1—1§y+wz=0, 3.1)
Uux H Px - 2ka _K . 2
vuy+m+wuz- 1-ky o(1-ky) v [V2u - T (l-ky) ul, (32)
2kuy
vvy + lky+WVZ lky —V[V2V+(1 Ky)2” (1 ky) v], (3.3)
vy + m*ww”*”vzw’ G4

p

with 2202 K 0 1 8@ &
ay2 1Ky gy TSP

If I is a typical length along the wall and Uj is a typical value of the free stream velocity,
the dimensionless boundary layer coordinates X, Y, and Z can be introduced via the
equations:

) (O]

1
where Re =U—l8 >> 1 is the Reynolds number, with § = (VFI )1/2. We also define K =k §,
v

K << 1. The velocity components (u, v, w) and the pressure p are made nondimensional
and expanded in terms of a small parameter ¢ as follows:

Oy =UX,Y) + eu'(X,Y,Z) + O(2), (5.1)
UVT Re =VXY) + £ V(X,Y Z) + O(s2), (5.2)
% Re = e W(X,Y.Z) + O(£2), (5.3)
L _Re2  =PX)Re2+py(X.Y) + £p'(X.YZ) + O(c2). (5.4)



Grouping together all terms proportional to the same power of ¢ and neglecting terms of
order Re2 and smaller, we find:

o(Q1):
L 11-%{ *Vy+ 13<XY =0, 6.1)
VUy+ % TRy + Ty = U TR a9 U ©62)

O(g): (note that the primes have been dropped)

'F%"'VY'F%*'WZ:O’ (64)
Uux+uU K(Uv+uV Ku K 2
Vuy + vUy + ui(_ngX - ( 1KY ) =uyy +uzz -ﬁ(_%(_ - (m) u, 6.5)
U \ 2G2U Kv
Vvy + vVy + vi‘_;le + l-KYu+ Py=Vyy+ sz-f:f(YY'*
2Kux K 2
+ -GV, (6.6)
(1-KY)2 1-KY
Uw Kw
VWY+ﬁ+pZ=Wyy+ sz-ﬁ, 6.7
with the (finite) Gortler number G defined by
G2= % Re=KReZ. )

Although K is of order Re"2, the derivation of the final perturbation equations is carried
out keeping all the K terms. Some of these terms (particularly the product KY) might not
be negligible when small spanwise wavenumbers are considered. The leading order
equations (6.1-2) allow the determination of the basic flow and pressure fields (U, V, P).
Equation (6.3) is not used; it shows that a normal gradient of Py is set up to balance the

centrifugal term (G U)2. For the limiting case of K — 0, a self-similar boundary layer



solution can be obtained for the general case of non-zero streamwise pressure gradients by
assuming the outer flow to vary as X™, and by enforcing no-slip conditions at the wall.
This procedure yields the well known Falkner-Skan similarity solution, so .that a

nondimensional stream-function f(n) satisfying the ordinary differential equation
P+ @) £ +m(1-£2)=0 ®)

with boundary conditions

f=f=0 atn =0, ©.1)
£=1 at 1) — oo, 9.2)

is sought. The similarity variable n is defined by
n=yx®@D2 (10)
and the velocity components U and V are given by

U=Xmf", (11.1)

v=x@b2(lm,, limg) 112)

For m=0 the Blasius solution is recovered, and the stability of the Blasius flow constitutes
the classical Gortler problem. For positive values of m the outer flow is accelerated
(favourable or negative pressure gradient) and a unique Falkner-Skan solution is available
for each value of m; the case m = -0.0904 corresponds to the limiting situation of
decelerating flow without separation at the wall. For decelerating flows with -0.0904 < m
< 0 there are an infinite number of solutions available, the laminar wall jet in an external
stream being an exampleS. Although such flows are of interest, we focus here only on the
classical solutions where U is a monotonically increasing function of 1. The combined
Gortler-Coriolis instability of wall jets with spanwise system rotation has been recently
studied by Matsson’.

Eqs. (6.4-7) define the linear stability problem for the leading order perturbations
(u,v,w) and for p. When K — 0 the equations already given by Floryan and Saric8 and
Hall3:9 are recovered. The boundary conditions appropriate to Egs. (6.4-7) are

u=v=w=0 atY=0and Y — oo, (12)



A form for the perturbation must be chosen and introduced into Egs. (6.4-7). Because of
the lack of translational invariance along X we have:

(u,v,wp) = @X,Y) cos oZ, V(X,Y) cos aZ, w(X,Y)sinaZ, p(X,Y)cos0Z),  (13)

with o real spanwise wavenumber. The final set of disturbance equations can be obtained
through elimination of the pressure term and w (note that tildes have been dropped):

K Ux KV
uyy - (V+1gy) vy - 110{“X [o2+ 185~ 1KY+(1KY)]“+

KU
+ (- Uy +158) V=0, (14.1)

U KV
vyyyy - (V + 1 KY) VYYY - TRy VXYY - [202+ Vy - Ky 3 (1 KY) ] vyy+

KU 3, 3K2V-2KU x  2Ko+Uxy

" Ky Xy * [@V-3G X axye + TRY vt

(-2K2U__ 3KUy a?U+Uyy

‘aKky? (Kyp LKY

4, -5K2Ux +3K3 LA 202K2+2KUxy L Uxxy
(1KY) (1-KY)? 1-KY

Ve 8K2 2Ux 2KU 3KVx

+ 1Ky Wyt (1 Ky AKY)Z | S+ Ggyys W+ (gyyz O+

8K3  10KUx-8K 2V 2U
I. X XY
Hlaxyys’ T GKY?  TAKY)y? e

+ rSKUxx—sK 2Vx Uxxy 202G2U+o. ZVX] =0

Tvx+

+ [04+02Vy-3 (l KY) Jv+

kY TaKygtT 1KY s
with bou/ndary conditions
u=v=vy=0 atY=0and Y — oo, (15)
and initial conditions

u=ugandv=vy at X = Xj. (16)



These equations, together with Eqgs. (6.1-3), are necessary to handle the stability at small
values of the wavenumber a., where a very strong sensitivity to small variations of the
basic state exists10-12, The stability equations reduce to those given by Hall3 when K is
set equal to 0. The parameters ruling this problem are the Gortler number G, the curvature
parameter K, and the initial position X, at which the perturbations are provided.
Furthermore, the initial perturbation distributions ug and vq plays a crucial role in the
instability development, particularly in proximity of Xo; as a consequence it was shown3
that the concept of a unique neutral curve is not tenable. To monitor the development of
the instability one can define a perturbation energy, for example

EX) = [u2(X.Y) dY an

and introduce a growth rate o as

1 dE
O=3E dxX ° (18)

The position of "neutral" stability is defined by the value of X for which ¢ vanishes: since
a Gortler number Gx = G X(3+m)/4 js associated with each X, a "neutral stability curve"
can then be constructed. Goulpié et al 13 have, however, demonstrated that different
definitions of energy can produce very different and discording predictions of neutral
points; this reinforces the argument that a unique marginal curve can not be defined.
Figure 3 attests to this. Analytical progress towards an "amplification threshold" is,
however, possible if one exploits the fact that two longitudinal scales exist: one for the
development of the base flow and one for the development of the perturbation. In the
following section, a local procedure that consistently allows consideration of non-parallel
effects will be outlined.

3. Multiple-scale analysis

In the presence of a spanwise-varying perturbation with wavenumber o, the
centrifugal term in Eq. (3.3) provides an amplification rate of disturbances of the order of
a(8/R)1/2, which is contrasted by a viscous damping of the order of a2v/U;. Therefore,
whereas the balance between amplification and damping becomes positive at very small
wavenumbers even for Gortler numbers less than unity (i.e. provided that ad < (8/R)1/2
dUj/v = G), the scale of length over which the perturbation evolves, namely [a(8/R)!/2 -
a2v/Uj]-1, is comparable to or greater than the longitudinal boundary layer scale / unless o
=0O(51) and (8R)1/2 << I. When, on the other hand, this condition is satisfied, a multiple-
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Figure 3. Some of the different neutral curves that can be obtained from local and marching
analyses for a boundary layer with negative streamwise pressure gradient (m = 0.3),
K — 0. The continuous line represents the prediction using Floryan and Saric's
local theory8, the dashed line is the prediction from Gértler's original equations!, and the
symbols correspond to predictions from the nonlocal theory3 with two different growth
criteria.

scale approximation can be employed in which (8R)1/2 plays the role of the "fast" scale
and ! plays the role of the "slow" one. Since the small ratio (8R)1/2/I (which is the same
as G-! with the definition (7) of the Gértler number G) is not likely to be exceedingly
small in practice, a multiple scale approximation of higher than leading order is well
suited for this problem. On the other hand, when the Gértler number is of order unity or
less and a is small compared to -1, the multiple scale approximation fails; this range of
parameters, however, appears to be relatively uninteresting, even if a positive rate of
amplification (whose definition in this range is not obvious) can be found, because the
driving centrifugal force is too small to produce an important total amplification before the
properties of the boundary layer change completely. This is in contrast to what happens in
curved channel flow (the Dean problem), where even a very small amplification rate can
produce considerable integrated effects in a channel of suitable length; the "available
length" of the boundary layer (i.e., the length over which its properties do not change too
much) is limited, and the product of the order of magnitude of the amplification rate times
this length is exactly what the Gortler number measures. It may look disturbing that this
approach entails renouncing to the concept of a "neutral curve", or at least renouncing to
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finding one by a multiple scale approximation, but if the question "When does the
amplification rate of disturbances become positive?" is replaced by "When does the
amplification rate of disturbances become positive enough to produce considerable total
amplification?", then the multiple-scale approximation is adequate to provide an answer.

Using the small scaling parameter € = G-1, as indicated by the foregoing order-of-
magnitude analysis, a multiple scale expansion for the solution of Egs. (14) can be set up
in the form:

£ = e®P(X)/e [f(X,Y) + £ f1(X,Y) + ..], 19

where f denotes either u or v or w or p. Correspondingly, the derivative of any one of
these quantities with respect to X shall be given by a series of the form

fx = e®X)V/e [l o fy + (fox + O ) + & (f1 x + O ) + .1, (20)

with the definition o = dp/dX. On inserting these expansions into Egs. (14) (where we

have set K = 0 for the sake of simplicity) and collecting like powers of ¢, the following
hierarchy of equations is obtained:

o(eD):
-cUuy=0, (21.1)
-0 Uvoyy + (a2U+Uyy)ovo+20a2Uu =0, (21.2)
o(1):
-oUu; -Uyvp=0, (21.3)

-oUvyy+(@2U+Uyy)ovi +202Uuy =-vo yyyy + V Vo yyy +
+Uvoxyy+ (202 + Vy) VoYY - (a2V + Uxy) VoY - (a2U + Uyy) VoX +
- (04 + a2Vy + Uxyy) vo - 2 0 Uy upy-20 Uxyu;, 21.4)

O(e):

-oUu-Uyvi=-upyy+V upy+ Uu x+ (a2 +Ux) vy, (21.5)

etc.
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However, a difficulty, common to many other boundary layer perturbation
expansions, is encountered: the expansion given above is not uniformly valid in Y,
because the highest Y-derivatives are lost at leading order and with them disappears the
possibility of enforcing a certain number of boundary conditions. Exactly the same
difficulty turns up, for instance, in the derivation of the Orr-Sommerfeld equation as
applied to non-parallel problems. The possible solutions to this difficulty are twofold.
One approach is to develop a multiple-deck description of the Y-structure of the problem,
as, for instance, in Hall's? analysis of the large wavenumber limit in which the
amplification turns back into damping far enough downstream. Alternatively, one can
promote the largest Y-derivative terms to an earlier order in the hierarchy than their formal

dependence on & would suggest, thus obtaining the modified equations

-oUvoyy + (@2U+Uyy)ovo+20a2Uu+¢ [vo,yyyy-V voyyy +
- (202 + Vy) vo.yy + (a2V + Uxy) .y + (04 + a2Vy + Uxyy) vo +
+20Uxu;y+20Uxyu]=0, 22.1)

-oUu;-Uyvo+efuyy-Vury- (a2 +Ux)u]=0, 22.2)

-oUviyy+ (02U + Uyy)o vi+202Uu+¢ [Viyyyy-V viyyy+
-(2a2 + Vy) V1YY + (a2V + Uxy) vi Y+ (a4 + 02Vy + Uxyy) vi +
+20Uxuy +2 o Uxy uz] = U vo xyy - (@2U + Uyy) Vo X, (22.3)

-oUu-Uyvi+euyy-Vury-(02+Ux) w]=Uux, 22.4)

The price to be paid for this modification is, just like in the Orr-Sommerfeld
problem, that the single terms fo, f1, etc. are now themselves functions of &, so that the
final result of truncating the series will not be a polynomial in €; the reward is that a
definite most amplified mode shape and amplification factor will be obtained
independently of the initial transient from which the mode is generated. Of course, if the
initial transient itself is to be studied other techniques must, and can, be employed; but this
is a different subject (the so-called receptivity problem).

In the just derived hierarchy, Eqs. (22.1-2) form a coupled system of homogeneous
ordinary differential equations for the unknowns vq and u; which must be solved with o in
the role of eigenvalue. The coefficients of these equations depend parametrically on X
and so will the solution (i.e., the numerical solution will be different at successive X-
stations). The X-derivatives of this leading-order solution then appear as known right-
hand-sides in Eqs. (22.3-4), which must be solved as ordinary differential equations in the



