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Preface

This monograph deals with the expansion properties, in the compiex
domain, of sets of polynomials which are defined by generating relations.
It thus represents a synthesis of two branches of analysis which have
been developing ‘almost independently. On the ome hand there has
grown up a body of results dealing with the more or less formal prop-
erties of sets of polynomials which possess simple generating relations.
Much of this material is summarized in the Bateman compendaa
_ (ERpELYI [1], vol. ITI, chap. 19) and in TRUESDELL [1]. On the other
hand,-a problem of fundamental interest in classical analysis is to study
the representability of an analytic function f(z) as a series J,¢,$,(2),
where {p,} is a prescribed sequence of functions, and the connections

between the function f and the coefficients ¢,. BIEBERBACH'S mono- =

graph Amalytische Fortsetzung (Ergebnisse der Ma.thema.tik, new series,
no. 3) can be regarded as a study of this problem for the special choice
P, (2) =2", and illustrates the depth and detail which such a specializa-
tion allows. However, the wealth of available information about other
sets of polynomials. has seldom been put to work in this connection
(the application of generating relations to expansion of functions is nat
even mentioned in the Bateman compendia).

At the other extreme, J. M. WHITTAKER and his students have
obtained many results about expansions of analytic functions in the
-so-called basic series which can be associated with very general sets of
polynomials. (See especially WHITTAKER [2].) In that theory the
degree of generality is so great that broad rather than refined results
are to be expected, and the internal structure of the prescribed sequence
of polynomials does not play much of a role. For example, the basic
tool of the Whittaker theory is the rearrangement of power series, and
so the theory is dominated by the presence of circular regions of con-
] vergence

We have adopted an intermediate position by disecussing the ex-
‘pansion of analytic functions in series of polynomials defined by a rather
general kind jof generating relation. Here we have tried to bring about
a certain amount of order and completeness and to formulate results
and methods in a fashion which will make them more generally acces-
sible. While we do not obtain as much information about the expansions
as is obtainable, for example, about power series, we obtain con-
siderably more than is obtainable for more general sets of polynomials:
thus we are not restricted to circular regions, or to the basic series,

V\



VI ‘ Preface

and we can discuss summability as well as convergence. Results of
this kind appear here and there in the literature (mostly for the classical
orthogonal polynomials), but as isolated observations and not as part
of a coherent theory. (An exception is MARTIN [1}, where a theory of -
‘the expansion of entire functions is developed by the method which
we follow in general.) The chief tool that we use is the method of kernel
expansion: this is at least as old as CAucHY’s deduction of TAYLOR’S -
theorem from CAUCHY’s integral formula®, AT :
" 'While litfle that we have to say is new in principle, some of the
general theory that we present is rather more general than anything
we have seen elsewhere, and some of the details seem not to have been
worked out before. In ‘particular, we have illustrated -the general
theory by applying it to many of the almost innumerable sets of poly-
nomials which have been intréduced into. the’ literature for one reason
or another. The material of § 8 on’ the possible form of multiple ex-
pansipns of a given function has riot been published before®. Some open
‘questions are mentioned on pp. 10, 18, 27 and 29. ‘
This study has been developed at intervals during the past twelve
years. For financial support during parts of this period, we are indebted
to the John Simon Guggenheim Memorial Foundation and North-
western University (Boas) and to the Office of Ordnance Research
(Buck).

Evanston (Illinois) June 1957 | R. P. Boas, JR.
Madison (Wiscansin) June 1957 : R. C. Buck

1 See PRINGSHEIM [1].
% (Added in proof). We understand that some of our results, as far as they
concern Appell sets, were obtained independently by J. STRINBERG, Application
de 1a théorie des suites d’Appell A une classe d’équations intégrales, Bull. Research
Council Israel, Sect. A. 7, no. 2 (to appear in 1958).
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. Chapter 1

intrgduction
. § 1. Generalities .
- The place of our work in the theory of polynomial expansions will
- be seen best if we begin with some general remarks. Let § be the complex
linear space of all polynomials, with the topology of uniform convergence
on all'compact subsets of a simply-connected region 2. The completion
of P is then the space A(£) of all functions f which are analytic in 2.
Let o={p,} be a sequence of polynomials which forms a basis for §:
that is, any pe P has a umque representation as a finite sump =3 ¢, 9,

Itis customary to call such a ¢ a basic set of polynomials. Then every -

feU(Q) is the limit of a sequence of finite sums of the form ZaJI= whu-

Of course this by no means implies that there are numbers ¢, such that
f=2Zc,p, with a convergent or even a summable series. One way of
attaching a series to a given function is as follows. Since ¢ is a basis,
in particular there is a row-finite infinite matnx umque among all
such matrices, such that

z*=2n,,,,p,,(z), k=0,1,2.... (1.4)

buppose that £ contains the orlgm let f be analytic at the origin, and
write

Ha) = Z foe) k. (1.2)

If we formally substltute (1 1) into (1.2), we obtain

/@) = Z /(*) (0) Z A np‘(z)

k=0 f#=0
or .
10 =St - (1.3)
where . B ‘
o = 20 /O (O)f. (1.4
k=0 :

The expansion (1.3) with coefficients (4.4) is the so-called basic series,

introduced by J. M. WaITTAKER [1], and studied in more detail by

‘him in a recent mionograph [2] and by his students in a long series of
- Ergebr, d. Mathem. N.F. H.19, Boas and Buck A
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papersl; A typlcal theorem is the followmg ‘with the basic set {p.}
we associate twé numbers w (“order”).and ¢ (“t ype”); then every *
_ entire function of growth fess than order 1/w, type 1/y is represepted
- byits basic series {1.3) with coefﬁexents (1.4); and in general functlons
of more rapid growth are not so representable. .
. The present study arose from the observation that this theorem -
_ while it tells nothing but the truth, does not tell the whole truth. The
following simple example will serve as an 111ustratxon
Consider ‘the basic set defined by’

Po""""‘ -
zﬂ

3 ;

P”(Z) -(;_:_;)T_ Pl n=1,2,....

It can easﬂy be calculated that this set is of -order 1 and type 1, so that

every entire function of exponential type less than 1 is represented by

the -basic serfes. As WHITTAKER'S general theory predacts, this result

is-to be rega.rded as sharp. . For, in this spec1a1 case formula (1.4) for -
the coefficients takes the form

=20, fum

k=n

(15

Applying this to f(2) =¢*, an entire function of exponential type 1, we
obtain ¢,= —(1+1+--:). Since thé formula (1.4) thus fails to define
coefficients for the basic series (1.3), it is customary to say that the.
basicseries does not exist, and certainly does not represent ¢*. However,
it is easy to see that every entire function f, and indeed every function

. analytic at 0, has a convergent representation

’ , f(2) = X cppa(z),
where cp=0 and :
n—1 1
=Y f00), n=12,.... - (1.7
1 k=0 '

i .
Moreover, since Z ;3,,( converges for every z to the sum 0, we also

have f(z) = > (cn +a P, (2) f@f évery 4, so that every function analytic
at 0 has an infinity of ctmvergent expansions in- terms of the ,(2).
In the light of such examples, we have felt that it is adv15able to re-
examine the subjest. ‘ '

Let us again consider the space %, its completion % (£2) and a given
" basis . By &(o) we shall mean the subspace of % consisting of all f
that can be expredsed i the form of a convergent series

16 = cutal®), 19

1 5¢e Math. ReVlews passim, pirticularly under Doss, EwEipa, Makag,
MiknaiL, MuRrs:, Nassi¥, TanTaoUI; also NEWNs [1], FaLGas [1].



w !

1. Generalities s

irrespective of the mode of formation of thec,. We call € (o) the expansion
class for 0. If () = and if in addition the expansion (1.8) is unique;,
{p,} is a base for ¥ and the c, may be given the form ¢, = Z,(f), where
{£,} is a sequence of linear functxonals orthogonal to {p,}. If €(o) =

and the expansion (1.8) is not necessarily unique, we call {1),,} a semzbase
In this case we have to make precise the notion of an expansion formula.

.Let & be the space of complex sequences ¢= (¢, ¢;, ...) such that
D¢, Py converges to an element of A. Let U be the linear transformation
“from € onto (¢) sending c€® into U(c) =f=2¢,p,cE(0). Let T be
any linear transformation whese domain is at least 8 and whose range
_Hes in S; suppose further that, for every pcB, UT(p) =p, so that T'
is a right inverse for U on P, Then, in the domain of T, we have -
UT(f)=/. Denote the class of such f by €(o,T). Then we say that
T defines an expansion formula applicable to. the class (E(a,T) If we
represent T as a sequence of linear functionals T=(%,, %, ...), $o
that 7'(f)=c where ¢,=.%,(f), then for all fcC(s,T) we have f=
UT({) = U(c) =X %, (f) .. We have thus shown that each right inverse
of U on P gives rise to an expansion formula and a class to which it
is applicable. If U is one-to-one, there is essentially only one right
inverse; in this case o is a base for %. If U is not one-to-one, U has an
infinité number -of right inverses; among these, one may be singled
out as the principal right inverse, as follows. Since ¢ is a basis for P
we may choose T so that T(p)=(c,, ¢, ...), the unique sequence of
coefficients for which p = > ¢,, and c,=0 for all large n. The expansion
formula corresponding to this choice of T is the basic series. '
We may illustrate this with our example (1.5). Here [(1.6) defines

the sequence {-%,} of functionals given by

2, = — 3 /()

Ck=n
and (1.7) defines the sequence {#} given by
. .?b’(f) . 0’ B v.

n—1 .
Lih=T M), n=12...,
s k=0 .

The corresponding linear transformations T =(%,, &,...) and T'=
(%, %, ...) are both right inverses for the transformatmn U associated.
with the sequence (1.5). The domain of T is a subspace of the domain
of T", and so every function f in €(g, T) has two essentially different
representatlons as series in the polynomials {p, (2)}.

" Further illustrations of these ideas will be given for other sets of
polynomlals as we come to them, Although results can be obtained by
our methods for general basic sets of polyroniials, the most interesting

N - 1*
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results apply only tb basic sets that have 4 sufficient amount of intrinsic -
structure. We have found that a kind of generalized Appell set is
- sufficiently specialized to yield interesting results, yet sufficiently general
to include many of the better-knmown polynomial sets, such as those
associated with the names of LAGUERRE, LEGENDRE, HERMITE, CHE-
BYSHEV, GEGENBAUER and Jacosr. Before introducing the class of
polynomial sets with which we shall chiefly work, we turn toa discussion -
‘of integral representations for analytic functions.* '

§2. Representatlon formuia.s with a kernel

We shall use an integral representatxon for ana.lytlc functions which
contains both the Cauchy integral formula and the Polya representation
for entire functions of exponential typé ‘It will be developed here in
a somewhat miore general form than is- required for ‘the applications

we shall makel.
' Let K(z, w) be analytic for (z, w) in an open set A containing the
plane z=0. ‘For any positive R, the compact set consisting of all points
(0, w) with |w| <R lies in A, so that there is a positive & such that
. (2, ) lies in A whenever |z| < é, |w| < R. For fixed R, let & (R) be the
supremum of such# and set §(R) = hm 0, (R +#). Then, for any choice

of R, all points (z, #) with |z|<d(R and |w[<R lie in A. ‘
 Let F(w) be regular for |w|>R a.nd let I" be the circle ]wl R+e.
" Then
f(2) = @ni) [ K(z, w) F(w) dw 2.1
r .

is regular for |z| <&(R+ 2¢). If we contract I" by decreasing &, we find
that f(z) is regular at least in the disk |z| <8(R). Thus (2.1) defines a
linear transformation T from the class of functions F that are regular
at oo into the class of functions f that are regular at 0. We can also
represent T as a sequence-to-sequence matrix transformation. Let -

- ) )
K(z,w) =2 3C, 2w, |z] <d(R), |w| <R,
ﬂ,k=0 -
and let
- do ,
F(w) =Z F w1, |w| >R.

{ There is no loss of generahty from assuming FF( o0} =0, since F(w) —F( ) .
viélds the same f(z) in (2.1) as F(w) does.] Then

T @) =253 ConFi =S aa = 1(8). (2.2)

1 For somewhat similar discussions see, in particular, A. J. MACINTYRE (41, ["]
Everarov [13, [2], LomnN [1}, FaLcas [2].
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If we write
'pz(Eh'Fl’;-")’ a:(amal"")'

(2.2)-is equivalent to the matrix equation «=Cgp, where €=1(C, ).

Many familiar integral formulas have the form (2.1) or (2.2). The
simplest example is obtained by taking C to be- the .identity matrix -
I—=3, ). Then o

Kw) =3 38,20 = (o=, ' -,
k=0 - n=0 .

" so that (2.1) becomes

fa) = (amiy? [T22 (23).
o r )

" In this case f has a simple alternative expression in terms of F, since
a=Ip=gp, f{) =271F(z), and (2.3) can be written ‘

o Flw)d
FzY) = (2ai) [ Helge
. r

-

so that (2.1) reduces to GAUCHY’s integral formula. -

An interesting general class of transforms is obtained by restricting
the matrix € to be triangular, with C, ,=0 for n>%. In this case -
K(z, w) can be written ) '

: oo k oo
K(z,w) =X v* T C,,2*=X @ (), -
k=0 n=0 k=0
where Q,(z) is a poiynomial.of degree % or less. Alternatively, we can

write - ' - '

K(z,w) = § z"i Cppte

n=0 R=n

= Z (2 w)”kgncn,k-!_-n wk

n=0 '

=¥(zw,w),

where ¥(s, #) is analytic in an open set containing the plane s=0.
If (s, #) is independent of ¢, then K(z, ) =¥(:w), where P =
S ¥, 2" is regular at the origin. In this case, which is the one i which
we are chiefly interested, the matrix C is diagonal, with C, ,=¥,.
We then have ’ :
f(2) = 2ni)? [ P(zw) Fw) dw . (248
~ A
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or alternatively

vy =3 ¥e, ’

=0 o
B =ZReLl 0 )
1) <ZE®

I we assumie further that no ¥, is zero, we can reconstruct F(w) uniquely

" from a given f(z), so that we can think of (2.4) as a representation
formula for f(z) instead of as defining a transform of F(w). In this
case 1t is convement to change the notation and replace (2.5) by

P =S¥r W40
‘n=0 5
f(z) =”§0f,._.z", 5 i i (2.6)
CEA LS Lot
Flw) = 3 g

When P(f) = ¢, (2.6) describes the correspondence (POLYA[1]) between
an entire function f(z) of exponential type and its Laplace (or Borel)
transform F(w).» The general case can be applied, by suitable choice
of ¥, either to entire functions of arbitrary order or to functwns that
* are regular in a prescribed region.

The representation provided by (2.4), (2.6) is most convenient to
use. when Y(#) is restricted by auxiliary conditions on its coefficients
Y.. We call ¥() a comparison function if ¥,>0 and ¥, i[¥,!0.
A comparison ﬁmctxon is necessanly entire, as the ratio test for con-
vergence shows. \When Y(#) is a comparison function, we denote by
R the class of entire functions f such that, for some number 7 (depend-
ing on ), ‘ .

. o HeeY < MW(-n'_\', 71 ec. (2.7)

We call ®y the class of functions of finite ¥-type. The infimum of
- numbers 7 for which (2.7) holds is the (exact) P-type of f; we denote
" by ®¢(7) 'the class of functions whose ¥-type is T or less. For example,
when ¥(f) =¢, ®¢(7) is the class of functions of exponential type 7,
that is, entire functions of order 1 and type not exceeding z, or of
order less than 1. s

The P-type of a function can be computed from the coefficients
in its power.series by applying the following theorem (NACHBIN [1]).

NacuBIN'S theorem. A function f(2) ——Z fo2" is of W-type v if and
only if.lim sup|f,/[¥, | "= z. e
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For the convenience of the reader, we give a proof here. First, let
lim sup]f,,/‘l’,,l”"-1<oo Then, if 7,>7v, we may choose B so that
|1u/%,| & B} for'n= 0, 1,2,.... Thus, on the circle |z|——r

I/(z)lsZIf..lr SBZ sPr" BY’(‘r,r\

Since 7; may be arb;tranly close to. 7, thls shows that f 1s of Y-type
at most 7.

In the other direction, we neeQa snnple lemma connecting the rate .
of growth of ¥ with that of its coefficients.

Lemma Let VYn= mm P(x)x™™. Then, for all nonnegative integers n,

1Sy~,,/¥’s(n+1) ; = (2.8)

and consequently lim (‘y,,IY/ Rl PRI .

Since Y(x) = ¥, «", it is evident that y, = !I’ To obtam the right-
hand side of (2.8), we estimate ¥(x) for a choice of x near.that which
. minimizes ¥(x)x~". Let d,=¥, /¥, and let 0<w<1; » is to be
near 1, and will be specified later. Recalling that a restriction on ¥
was that {d,} increases, we observe that !I’,,s!l’d"‘" both for k<<#
and k= 1. Settmg r=wd,, we have '

W(x) = zWﬁswzw4@u

<T@ — o).

For this choice of x, we have ¥(#)/2" <, =" A ~w), and so yu/F <
o~ *(f—w). Choosing w as nf(n-+1) to minimize the right-hand side,
we obtain : : .
YalTaS (0 + 1) (1 +07) < (n + 1) e

To apply the lemma, suppose that f is of Y-type . If ;> 7, then
for some M we have |f(z)] < M¥(r,r). By CAUCHY'S inequality,

‘ V"l SMYP () r =MV (ry7) rlr)"f‘.
Choosing 7 to minimize the right-hand side, we find |f,| < M 7}y,, and
I f"/YI”lllﬁ = Ml/n tl;( n/gln)]‘/n'

Invoking the lemma, we then have lim sup|f,/¥,|"* <=,. The con-
clusion of NACHBIN’S theorem follows on letting 7, approach 7. .
Now let fe Ry, let F be defined by (2.6), and let D(f) denote. the
union of the set of all singular points of F and the set of all points
exterior to the domain of F. The contour I"in (2.4) can then be any
contour enclosing D (f). If fe®Ry(z), hen D(f) lies in the disk |w| <
and I" may be taken as the circle |w| =g>7. Additional information
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<

about D(j) will ledd to more detailed estimates of the growth of { in
~ wvarious directions. ;

We summarize the relevant paxts of the preoedmg chscussmn in a
‘formal theorem .

Theorem 29 Zet Y’(t)--ZTt" be a comparison fum:mm i.e
V. >0 and ¥, /¥, 10. Let ](z Ef,,z" belong to the class R,g [as in
2.2)3, let D(f) be the closed set described
in the prece paragraph. Then =

) ' ¥ ‘\ ’ »~’

1) =y [PGw) Fw) dw
g oo . s

where 1" encloses D(,‘j and

[=:] f N
F(w) = _if#r"f ’ (2 10)
Fig. 1. The supporting function When ¥(#) is chosen as ¢, this theorem

e vy becomes the famlhar representatlon for entire

functions of exponential type. If fz) =2 a,z"n!is ent:re and of growth

at most order 1, finite type, then *=° , -
=1 (g

f(2) = mr_fe‘ F(w)dw,

where F(w) =) a,/w"*! and I" encircles the set D(f). If f is of ex-
n=0

ponential type 7, then D(f) lies in the closed disk |w|< 7. P6Lva, in
his notable memoir [1], showed that the rate of growth of f along radial
lines sharply delimits the set D(f). (A detailed treatment is to be found
in Boas [3], BIEBERBACH [2], CARTWRIGHT [1] or LEvIN [1].) '

With any closed set S in the plane one may associate a supportmg
function y

k(w) =k(p;S) = s 4 R(ze'7).

If S2 is the closed convex hull of S, then k(p; S)=k(p; SA). {See
Fig. 1))

With an entire function f of order 1, one may associate an mchcator
(growth) function

#(6) = h(6; f) = limsupslog | f(re*’)] .

If f is of finite type v, then #(8; /) < 7 for every 6.

. The central fact discovered by PoLvAa was that %(6) is also the
supporting function for a convex set, namely, the conjugate of the set
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D(f)A. This is called the conjugate indicator diagram of f. This relation
can be stated concisely as follows: if f is any entire function of ‘exponential
type, then k(8; D (f)2) =h(—6; f) for each 6. The proof depends upon
the fact that (2.10) can be given an integral form

F(w) = w™ j‘oe”'/(t/w)dt
= jo'oe‘”’fi(s) ds
0

from which it easily follows that F(w) is analytic in each half plane
R@we O >h(—0;]). « NS :

As an illustration of the way in which the relation between k(0)
and D (f) is used, observe that if f obeys k(L =/2) <¢, then D (f) lies in
the strip |v|<c. i '

For a general ¢omparison function ¥(f), the relationship between”
D(f) and growth rates of f is not so precise. Some information can be
achieved about the shape of D(f). It is again possible to obtain an
integral form for the generalized Borel transform (2.10). .Choose a
function «(f), of bounded variation on the ‘interval [0, ), so that

AMB, = [ dald). BENRT)

Then, — .
F(w) = w? [ f(t/w) da(?). (2.12)
" .0 = )
[In § 13, we shall use an analogous approach in dealing with the case
in which P(}) is not entire.] : . ‘
In this direction, the sharpest results have been obtained by A. J.
MACINTYRE [1], using again a specialized: choice of P(f). If we wish
to discuss entire functions of order g, it would be appropriate to choose
P(f) as a function of order g, type 1, whose coefficients ¥, have a simple
form. Two natural choices are Y. #*/(n!)*¢ and 2 #I'(1+nfg), which
reduce to ¢ for p=1. Instead of these, MacINTYRE chose ¥(})=
Zer((1+mne™). For this, (2.12) takes the form .

1B, — e+ no) = [ troe " dt
’ 0
so that ' -
- @ —® 13 i .
_ F(w) -—-—Jff(t/w) e dt. : (2.13)
0 ' A
Introduce the analogous growth function
 hy(6) = limsup r—elog|f(re?).
= ‘“‘,‘:‘Ig == i == ik Y Yo d L M- n
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