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Preface

This is the fourth edition of Multivariate Statistical Methods. In writing the first edition, my original
motivation came from the kinds of statistical problems brought by investigators in the life, medical,
and behavioral sciences at the National Institute of Mental Health, and the need for a text and
reference source which did not presuppose several courses in statistical theory. Subsequently the
book was used as the basis for a one-semester course in multivariate methods for thirty-plus years
at the Wharton School of the University of Pennsylvania.

In planning the revised volume I concluded that the material of the previous Chapter 1, an
overview of traditional univariate statistics, and Chapter 2, a summary of useful matrix algebra
concepts, were readily available in many other texts, and should be omitted. Hence, those chapters
of the third edition have been scanned to a website for the current edition that is maintained by
Duxbury Press.

Certain themes continue in this edition: The extension of univariate tests on the mean to multidi-
mensional mean vectors through the Hotelling 7' statistic and the multivariate analysis of variance
(MANOVA), classification by various discrimination measures, and the dissection of covariance
structure by principal component and factor analysis. Wherever possible, the tests are followed by
simultaneous inferential procedures. For that reason I still prefer S. N. Roy’s union-intersection
development of the tests, and its natural concomitant of simultaneous confidence intervals for any
requisite multiple comparisons.

I have attempted to reference many of the relevant contributions to multivariate analysis from
the mainstream journals over the past fifteen years in this edition, especially in such areas as the
analysis of repeated measures data. Additional exercises using actual data sets have been included,
particularly in Chapters 2, 3, and 6. A variety of disciplines is represented by those data. A number of
examples arose from my participation in the Cerebrovascular Research Center at the Medical School
of the University of Pennsylvania, and I am most grateful to Dr. Martin Reivich and his colleagues
for that stimulating association and the use of their data here. Other sets, e.g., course and instructor
ratings, may be more mundane, but still nicely illustrate certain multivariate concepts and methods.

As in the earlier editions no single statistical software system is used for implementing the
multivariate analysis. I have found MINITAB convenient and user-friendly for MANOVA, discrim-
ination and classification, extracting principal components, and factor analysis, and I am grateful to
MINITAB, Inc., for providing copies of its software under its Author Assistance Program. In other
examples I have used APL for evaluating linear and quadratic functions of data, and especially its
EIG and SYMEIG functions for computing the characteristic roots and vectors of matrices.

I am greatly indebted to Carolyn Crockett, Senior Acquisitions Editor of Duxbury Press, for
her support of this project. Kelsey McGee at Duxbury was very helpful for her encouragement and
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interest in the book during its preparation. Jennifer Jenkins and Rhonda Letts at Duxbury were
continually supportive during the writing and composition phases.

The initial composition of this book in LaTex pages would not been possible without an in-
tervention of my wife, Phyllis Morrison. Before a talk by Professor Richard Kadison of the Penn
Mathematics Department to the University Women’s club, she mentioned my project. Professor
Kadison introduced me to his graduate student, Junhao Shen, who agreed to undertake the lengthy
task of composing the book by the TeX language. I am greatly indebted to Mr. Shen for his steadfast
work in producing the pages and their numerous tables and mathematical displays. Any errors that
might appear are, of course, my own responsibility.

Donald F. Morrison
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Chapter 1

Samples from the Multivariate
Normal Population

1.1 Introduction

In this chapter we shall extend the concept of a continuous random variable to variates defined in
several dimensions. We shall concentrate our attention on the multivariate generalization of normally
distributed random variables. The parameters of that multinormal distribution will be related to
multiple and partial correlation measures for describing relations among the dimensions. We shall
consider means of estimating the multinormal parameters from random samples of observations
on the variates, as well as the sampling distributions of estimates and related statistics. In the
methods for hypothesis tests and confidence statements on parametric functions we shall emphasize
procedures which control error rates for several simultaneous inferences. Some attention will be
given to estimation when observations are missing at random in the data.

1.2 Why Do We Need Multivariate Methods?

Univariate statistical methods deal with single variables: Quantitative Graduate Record Examination
scores for students matriculating in a university program, blood glucose levels in the control group
of a nutrition study at a particular time, or the total score of a cognitive ability test given to twenty-
year-old women as part of a longitudinal investigation of human aging. In each case we wish to
make statistical inferences about the population distribution of the variable, set confidence intervals
for its parameters, and perhaps test hypotheses about the values of the parameters. Our view of each
variable is one-dimensional.
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Multivariate analysis considers several variables at once. For example, we might wish to inves-
tigate the variation in the rate at which the human brain metabolizes glucose at different anatomical
regions in a sample of young normal male subjects. The cerebral glucose metabolic rate, denoted
by CMRgl, can be measured by positron emission tomography (PET) scans of the brain when the
subject has received an injection of a radioactive tracer substance, such as Fluorodeoxyglucose-18.
Then, for p anatomical regions of interest or coordinate locations in the brain the measured CMRgl
values can be represented by the row vector of observations

X' =[x1,...,xp]
If we have a sample of N subjects the data can be represented conveniently in matrix form as

X11 .o Xip
X =
XN1 --- XNp

Each row contains the observations from a subject, while the columns give CMRgl for a particular
location in the brain. In the algebraic sense, we have extended one-dimensional data to vectors with
p components.

If we have a random sample of subjects, and if the assumption of a multidimensional normal
distribution holds, we can answer these questions about the parameters of the distribution:

1. Are the CMRgl population means simultaneously equal to p specified values?
2. Is the mean CMRgl the same at the p locations in the brain?

3. What are the confidence intervals for the p population CMRgl means?

4

. What can we infer about the variability and dependence structures of the p variables? Does
the structure have a pattern that might imply simpler hidden structures?

Multivariate analysis essentially extends univariate tests and confidence intervals for parameters to
vectors or matrices of parameters.

Frequently multivariate data are collected in more complex designs than a simple random sample,
and the univariate methods based on those experimental designs can be extended to observation
vectors to produce tests for the equality of two or more mean vectors. For example, in the case of
CMRgl measured by PET scans we might have two separate samples of young (under age 40) and
old (age 40 and over) subjects. The regions of interest (ROIs) in the brain are also designated by
left or right hemisphere. If each anatomic structure has corresponding left and right locations, the
metabolic rates might be arranged as in Table 1.1, where the observations are denoted by a generic
x to avoid the unnecessary complications of subscripts.

Multivariate statistical theory provides methods for making these inferences about the distribu-
tion of old and young CMRg]l variables:

1. Are the CMRgl means different for the old and young populations?
2. Do the left and right hemispheres differ in the CMRgl means?
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TABLE 1.1
Cerebral Metabolic Rates Cross-Classified by Age
and Hemisphere

Hemisphere

Left Region Right Region

Age Subject 1...p 1...p
Ny X.ox X..x
Young .] X.x X...x
N> r X X wdk

3. Are the left-right hemisphere differences the same for the old and young populations?

4. Do the regions have the same CMRgl means, either aggregated over age and hemisphere, or
separately within those classifications?

5. Are mean linear functions (e.g., the average) the same for the old and young populations, or
for the left and right hemispheres?

6. What are the properties of the variability and dependence structures for the age and hemisphere
subgroups?

For a single CMRgl observation we could answer those questions by 7 and F tests, and the analysis
of variance. For multivariate data those methods have been generalized to hypotheses tests on vectors
of means, or multivariate analysis of variance for vector-valued observations. In the forthcoming
sections of this book we shall describe those statistical methods. In the next section we shall begin
by developing some of their underlying mathematical assumptions.

1.3 Multidimensional Random Variables

Let us define the p-dimensional random variable X as the vector

(1) X' =[Xi,...,Xp]

whose elements are continuous unidimensional random variables with density functions f(x;), ...,
fp(xp) and distribution functions Fj(x;), ..., F,(xp). In like manner X has the joint distribution
function

2) Fi(xy...., X,,):P(X]le ..... X,,S.Xp)
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If that function is absolutely continuous, it is possible to write

3) F(xl,...,xp)=/p.‘./4 Fut. ... up)dui...du,

where f(xi,...,xp) is the joint density function of the elements of X. If those quantities are
independent random variables,

f(xlv"'vxp) = fl(xl)---fp(xp)

(4)
F(xi,...,xp) = Fi(x1) ... Fp(x,)

Conversely, such factorizations of the density and distribution functions imply that the X; are inde-
pendent variates. Through the assumption of independence the forms of the joint distribution and
density have been exceedingly simplified, and it is for this reason that classical statistical methods
require random samples of observations to permit the various joint distributions to have this product
form. However, the multivariate statistical models we shall encounter in this text will nearly always
assume that the elements of the random vector are dependent, and the resulting analytical procedures
and distribution theory will be constructed to be valid in the presence of this dependence. Still, as
in the univariate case, we shall require that successive sample observation vectors from the multidi-
mensional population have been drawn in such a way that they can be construed as realizations of
independent random vectors.

The joint density of any subset of the elements of X is found by integrating the original joint
density over the domain of the variates not in the subset. If the variates have been numbered con-

veniently, so that the subset consists of the elements Xy, ..., X,, and the complement of the set
contains X 1, ..., Xp4g4, the joint density of the first variates is
o0 o0
(5) g(xl,...,xp)zf / FOr oo xprg)dxpyy ..o dxpyy
—00 — 00

and the joint distribution function can be computed by setting the variates of the second subset equal
to their upper limits in the original joint distribution function:

Gty xp) = P(X) <x1,..., Xp < xp)
(6)

= FUX s 0005 Kps O51 545 O0)

We note in particular that the marginal density of any single element of X is

(7) f,-(x,~)=/ / fGr, oo xp)dxy .. odxidxiyy .. dxp

In such multiple integrals as (5) and (7) it is essential to recognize that the density functions
have always been properly defined so that the limits of integration can be stated formally as —oo and
oo. For example, if ¥} and Y, are independent variates with the common density and distribution
function g(y) and G (y), respectively, the joint density of the new random variables

X = smaller of (Y1, Y2)

(8)
X, = larger of (Y}, Y»)
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can be shown to be

2g(x1)g(x2) —00 <x] X2 <00
9) fxi,x2) = .
otherwise

The marginal densities are
(10) filxp) =/ fx1, x2) dx;

= / Odx; +2 f g (x1)g () dx

=2g(x[l = G(x1)] —00 < X1 <00
(11) f2(x2) =/ f(x1, x2)dx

X2 o0
= 2/ g(x1)g(x2)dx; +f 0dx
X

—00 )

=2g(x2)G(x2) —00 < Xy < 00

We observe in passing that while f (x1, x;) factored into the product of two densitylike functions, the
variates X | and X are not independent, for these factors are not the marginal densities (10) and (11).

Conditional Distributions

It is frequently necessary in multivariate analysis to know the distribution of one set of random
variables, given that the variates of a second group have been set equal to specified constant values
or have been constrained to lie in some subregion of their complete space. Such distributions and
density functions are called conditional. The density function of the conditional distribution of

). ST Xpgiven X, 1 = Xpi1, ..., Xpirg = Xpyq can be shown to be
(12) h('x17 s 5xp[x[)+1y L »-xp+q) = f(xl» . -7xp+q)/g(xp+l» . -9xp+q)
where f(xy, ..., xp4q) is the joint density of the complete set of p + g variates and g(xp41, .. .,

Xp+q) 18 the positive joint density of the ¢ fixed variates. If the two sets of variates are independent,
factorization of the joint density implies that the conditional density of the first set is merely the
joint density of those random variables. For any admissible set of values of the fixed variates the
function (12) has all the properties of a density function, and if the original distribution function is
absolutely continuous, the conditional distribution function can be computed in the usual manner as

(13) F(xp,....xplxpt1s e Xpyg) =
X X
f_’;o oo S Ws e, lps Xpy1ses s Xppg)diy « o nduy
gxpyt, .-, Xpiq)

The fact that F' (0o, ..., 00|Xp41, ..., Xpyg) = 1 should be immediately apparent from (5) and (13).
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For an example let us refer to the random variables X and X, whose joint density is specified
by expression (9). The conditional density of X, given that X, has the value x,, is

(14) falx) =

g(x1)/G(xy) —o0 <x;<x2<00
elsewhere

The conditional distribution function is

G(x1)/G(x2) —00 < X] <X <X
(15) F(xi|x2) =
X < x; <00

For all x;, the conditional probability that X will be at most equal to x; will be larger than the
unconditional probability G (x;) of that event. Through the conditional distribution function we may
use knowledge of the magnitude of X» to improve our prediction of the value of the first random
variable.

Moments of Multidimensional Variates
The expected value of the random vector X is merely the vector of the expectations of its elements:
(16) EX) =[E(X))...., E(X},)]

Similarly the expectation of a random matrix is the matrix of expected values of the random elements.
For the generalization of the variance to multidimensional variates let us first define the covariance
of the elements X; and X ; of X as the product moment of those variates about their respective means:

(17) cov (X;, X;) = E{[X; — E(X)I[X; — E(X})]}
= E(X;X;) — [E(X)IE(X))]
=f / xiXj fij(xi, xj)dxidxj — [E(X)][E(X )]
=Uij

where f;j(x;, x;) is the joint density of X; and X ;. If i = j, the covariance is the variance of X,
and we shall customarily write o;; = oiz. The extension of the variance notion to the p-component
random vector X is the matrix of variances and covariances

(18) cov (X, X) = E{[X - EX)][X - E(X)]'}
g1 U[p
Olp opp
=X

We shall call this symmetric matrix the covariance matrix of X.
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It is easily verified from the definition (17) that the covariance of two random variables is
unchanged by shifts in the origins of those variates. Thus,

(19) cov(X; +a, X;+b)=cov(X;, X;)

for all real constants a and b. Similarly, changes in scale of variates affect the covariance by the
same factors:

(20) cov (cX;,dX;) = cd cov(X;, X;)

This result leads to the expression for the variance of a linear compound a’X = a; X +---+a,X,
of random variables:

a;ajo;; = a'Ya
1

p
(21) var (a'X) = Z

)4
=1 =

The covariance of the two linear compounds a’X and b’X in the same random variables is the bilinear
form

p P
(22) cov(@X.b'X) =) " "abjo;; =a'Sh
i=1 j=1

More generally, if A and B are of dimensions r x p and s x p, respectively, and contain real elements,
the covariances of the transformed variates

Y =AX Z =BX
will be given by the matrices

cov(Y,Y) =AXA’
(23) cov(Z,Z") = BXB’
cov(Y,Z) = AXB

The correlation coefficient of the variates X; and X ; is defined as

COV(X,', Xj)
Vvar(X;)var(X ;)

By the properties (19) and (20) it follows that the correlation is a pure-number invariant under
changes of scale and origin of its variates. From the properties of the integrals defining the variance
and covariance it can be shown that p cannot be less than —1 or greater than 1. If X; and X
are independently distributed, their covariance, and hence their correlation, is zero. However, the
converse is not generally true, for it is possible to construct examples of highly dependent random
variables whose correlation is zero.

(24) pij =
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Later we shall need the matrix of population correlations

(25)

1L prn .. pip

Pip P2p - 1

If we denote by D(o;) the diagonal matrix of the standard deviations of the variates, the covariance
and correlation matrices can be related as

(26)

=2 (5 ()

3 = D(0;)PD(o;)

1.4 The Multivariate Normal Distribution

In the remainder of this book only the multivariate normal distribution will be used to describe the
population out of which our samples of observation vectors will be drawn. There are two compelling
reasons for this restriction:

1. A random vector which arose as the sum of a large number of independently and identically

distributed random vectors will be distributed according to the multivariate normal distri-
bution as the number of these fundamental source vectors increases without bound. That
is, the usual central-limit theorem, which assures a normal distribution for variates which
are summations of many independent random inputs, carries over directly to multidimen-
sional inputs. This summation model appears to be a realistic one for many kinds of random
phenomena encountered in the life and behavioral sciences.

. Different models for the variate vectors might lead to rather different joint distributions of the

elements whose mathematical complexity would prevent the development of the sampling
distributions of the usual test statistics and estimates. Such distributions would have to be
provided for each model’s fundamental population. However, it seems likely that with the
exception of rather pathological cases, the multivariate central-limit theorem would guarantee
that the large-sample distributions of test statistics would lead us to similar conclusions about
the state of nature.

Now let us develop the multivariate normal density function. Recall that the density of a normally

distributed random variable X is

(1)

o(x) =
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The joint density of the independent normal variates is thus

1 xi— i\’
@ el Tl = (277)”/21’1 T Op o [—5 ;( | Uiu ) ]
If we write X' = [x1, ..., xplo ' =1y, ..., p1pl, and
012 0
¥y =
0 0;'

the joint density can be given as

1
(3) P(x) = (x—w)'S '(x - u)}

1
a2z P {_5

9

In this representation we see immediately that x has been replaced by a vector variate, u is now a
vector of means, and o2 has been generalized to a diagonal matrix. The squared term of the univariate
density exponent is now a quadratic form in the deviations of the variates from their means, and the

square root of the determinant of 3 has assumed the role of the univariate scale factor o .

The general p-dimensional normal density function is obtained by permitting X in (3) to be any

p X p symmetric positive definite matrix. Then ¢ (x) is positive for all finite x, and

/ / ¢(X)dx1...dxp:1

for all g, so that ¢ (x) is indeed a density function. The ith element of g is still the mean of x;, the
ith diagonal element of the more general matrix 3 is still the /th variance, and now the i jth element
o;; of 3 can be shown to be the covariance of the ith and jth components of x. We see immediately

that if all p(p — 1)/2 covariances are zero, the p components of x are independently distributed.

The case of p = 2 is especially important in statistical theory. Here

i of o102
,J, = E = 5
M2 001072 o5
and the joint density is

1 1 1 X1 — M1 2
4) d(x1, x2) = expy—3 ( )
201024/ 1 — p? 2|1-p2 o1

(M) () o (2222) )




