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Preface

Some four billion years ago countless combinatorial experiments in chemis-
try were occurring. Random condensations and oligomerizations in time
produced large structures and macromolecular ensembles within differen-
tiated complex networks of chemical processes. The emergence of linked
processes, such as the ability to evolve, metabolize, and reproduce, defines
what we know as life. Unlike the two-dimensional world described in
Abbott’s classic novella Flatland (1884) [1], the only life we know is three-
dimensional in which chirality plays a leading role. Numerous mechanisms
abound to account for the generation of optically active compounds in the
prebiotic world, with chiral molecules as the norm instead of the exception.
Thus, as with life itself, asymmetric synthesis may have been inevitable and
merely contingent on the ground rules set some 10 billion years earlier. The
stereoselective synthesis of molecules continues unabated by the hand of
Nature in living organisms and the hands of chemists in laboratories
engaged in the science of synthesis.

The scientific discipline of stereoselective synthesis has its origins in the
late 1880’s with Fischer’s experiments aimed at the structural characteriza-
tion of carbohydrates. In pondering the result that the addition of HCN to
glucose produced a single diastereomer, Fischer stated: “These observations
are, to my knowledge, the first definitive experimental evidence that further synth-
esis with asymmetric systems proceeds in an asymmetric manner. Although this
statement does not at all contradict theory, it by no means follows from it.”[2]
Fischer differentiated between absolute asymmetric (or enantioselective)
synthesis and diastereoselective synthesis. It is clear that he was aware of
the far-reaching significance of his observations. However, it would not be
until the following century that stereoselective synthesis would gain its
own footing theoretically and practically as a discipline on its own terms.

The early history of stereoselective synthesis is summarized in a book
from 1933 by Patrick D. Ritchie entitled “Asymmetric Synthesis and Asym-
metric Induction.” [3] It makes for curious and informative reading. For ex-
ample, one learns that Fischer considered the possibility of asymmetric
synthesis in living systems by resolution of enantiomers. In a lecture to
the German Chemical Society in 1890 on “Synthesis in the Sugar Group”
he is quoted as stating: “no fact hitherto speaks against the view that
plant, like chemical synthesis, first prepares the inactive sugars: that it
then resolves them into their active constituents ...” The book includes a dis-
cussion of the few reactions that were nominally stereoselective, even if only
modestly so. The text is peppered with terms recognizable to the modern
reader, such as “induction”, albeit in unfamiliar settings. These are redolent
of the prevailing uneasiness in the community with the underlying nature of
the controlling forces. The primary objective of the narrative was to deal with
the topic of vitalism and stereochemistry. For those interested in tracing de-
velopments in the field in a modern context, a number of sources are worth
consulting: Morrison and Mosher’s “Asymmetric Organic Reactions” [4]; the
five-volume treatise “Asymmetric Synthesis” with Morrison as editor [5]; the
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multivolume series entitled “Stereoselective Synthesis” edited by Helmchen,
Hoffmann, Mulzer, and Schaumann [6], and the three-volume compendium
“Comprehensive Asymmetric Catalysis” edited by Jacobsen, Pfaltz, and Yama-
moto [7]. However, there is no publication to date that selectively collects
the highlights in stereoselective synthesis with the aim of providing a
wide perspective on the field. Thus at the outset of our own venture, we
felt confident of the need for such a book.

To write a book that purports to identify the classics in stereoselective
synthesis seemed a daunting challenge. It is inherently an interdisciplinary
field, which has interested inorganic, organic, physical, theoretical chemists,
and, with particular intensity, those who enjoy the thrill of building mole-
cules. R. B. Woodward has written a rather insightful epigraph: “There are
no generalities in chemistry, that’s the beauty of it.” [8] The practitioner of
chemical synthesis can surely relate to this, as structure and reactivity
space is uncompromisingly large. This is a concept that is often missed
by those who are not engaged in the day-to-day activities in chemical syn-
thesis. In analogy to biological systems, basic problems in synthesis are
not solved once, rather the synthetic chemist must address the challenges
specific to each different setting. Thus, the asymmetric synthesis of complex,
and even of not so complex, structures is a multivariable and multidimen-
sional problem.

Despite the bevy of activity that has occurred in numerous research labora-
tories, certain advances can be identified that are quantum leaps in the field,
which demark a clear break with the past and have served to propel the field
forward. Because of the nature of the field, these are associated with certain
reactions that serve as beacons; they are the standard bearers or points of re-
ference. These may be largely driven by and attributed to key personalities
with vision, determination, and imagination. Consequently, a book on the
classics in asymmetric synthesis will inevitably at times focus on individuals
whose names form a repeating motif. Nonetheless, no group works in a va-
cuum, and the efforts of countless investigators are indispensable to the
health of the discipline and the progress it continues to make. This is a fea-
ture we have attempted to highlight in writing this book.

The daunting question that we first had to address was the definition of a
classic; this haunted us until the very last sentence. By looking to fellow che-
mists for their perspective, it became clear that a cacophony of opinions on
the matter abound. Various possible definitions of a classic in stereoselective
synthesis include the first example for a given reaction, as well as the method
displaying highest selectivity, scope, or utility. Each of these criteria alone pose
difficulties in any approach to defining a canon of stereoselective reactions.
Some of these categorizations may ignore the significance of early work criti-
cal to delineating the intellectual context of problems and defining the solu-
tions that followed. These also may not account for contributions made in un-
derstanding underlying theoretical aspects. The formulation of models and
mechanistic constructs has been critical in setting the stage for further discov-
ery and innovation. Moreover, these narrow definitions are inherently biased
against new developments in a discipline that remains far from mature. There
is yet another important issue that merits emphasizing, namely, a term such
as “reaction” as commonly employed in synthesis can refer to both a broad
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class of reactions as well as a very specific transformation; this can lead to ab-
solute statements of unclear significance such as “the asymmetric Diels-Alder
reaction is a solved problem.” The common transformations are actually a
collection of a multitude of reactions. Consequently, it is possible to identify
a multitude of classic aldol additions or Diels-Alder cycloadditions, each of
which addresses various stereochemical challenges in asymmetric synthesis:
anti versus syn diastereoselective aldol additions, endo versus exo selective
cycloadditions, auxiliary versus catalyst control. Thus, any compilation of
classic reactions must necessarily deal with these nuances, each of which
addresses unique problems in the interplay of structure and reactivity.

In this book we have attempted to amalgamate the various definitions de-
scribed above. Thus, in many circumstances we have made efforts to include
the first example of a certain stereoselective transformation, even if the selec-
tivity was modest. We have incorporated early examples of auxiliaries or cat-
alysts that helped to guide and define the development of the field, although
they may have subsequently been surpassed. In trying to include exemplars
of many of the reactions employed by the practioners of the field, we have
inevitably faced the difficulty that any number of prototypes could have
been selected, all of equal merit. Under these circumstances, there is no
way of getting around the fact that the selection becomes subject to the
authors’ own background and personal biases.

We have made extensive use of inserts/asides at the margins of each page
to augment the text. These are not in general discussed, and it is expected
that their positioning in a given chapter hopefully makes their relevance ob-
vious. There are a handful of instances when the asides include an example,
which was simply otherwise difficult to incorporate in the structure chosen
for the book and/or the chapter. In some cases the asides constitute recent
examples in the literature that surfaced in the final phases of the writing,
which were judged as noteworthy of inclusion. These situations were simply
too good to pass up. Asides may also involve quotes; some are insightful,
thought-provoking, and some even comical. In the words of Montaigne,
“I quote others only the better to express myself.”

The reader of this book is expected to have a thorough understanding of
the fundamentals of synthetic organic chemistry. Significantly, the book is
not a text book, and this liberates the authors from strict pedagogical restric-
tions in the presentation of the materials. We chose an overarching construct
in which these various aspects of the discipline are interwoven and the pre-
sentation proceeds according to major reaction types. The field of stereose-
lective synthesis abounds with deep-seated concepts involving the interplay
of structure and reactivity within innovative mechanistic constructs. We
have chosen to include mechanistic models when they are particularly valu-
able for understanding or predicting the observed stereoselectivity. When we
have provided a detailed mechanistic description, we have opted not to alter
the proposal by the original investigator when no new data requiring its
modification is available.

The book is partitioned into 18 chapters that reflect the typical common
grouping of synthetic transformations, even if this results in some thematic
overlap. The chapters on macrocyclic stereocontrol and chiral acetals (Chap-
ters 1 and 6, respectively) may seem old-fashioned; yet, these have formed
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the basis of important considerations in the asymmetric synthesis of mole-
cules and continue to play a role in modern synthetic strategy. One chapter
would seem to be overtly specific, namely Chapter 10: Amino Acids. We felt
that this is a class of compounds that holds a special place at the interface of
synthesis and biology, and for the synthetic chemist conjures up specific
ideas and a collection of reaction processes. Many chapters are inherently in-
terconnected, as exemplified by Chapters 3, 11 and 12 dealing with reactions
of enolates, imines and 1,4-acceptors, respectively. In this regard, enolates
are by definition the reaction partners in the Mannich and Michael addition
reactions. For the imine or conjugate addition processes the focus is the elec-
trophilic partner, with the nature of the nucleophile being secondary. By con-
trast, Chapter 3 on a-functionalizations of enolates is limited to a discussion
of reactivity focused on the enolate itself, such as alkylations and halogena-
tions. Two chapters deal with transformations involving formal allylation
processes, namely Chapters 5 and 14. The first of these, “Allylations of
C=0 Bonds”, is a collection of carbonyl addition reactions by o-bonded allyl-
metal reagents, such as allylboron or allylsilicon species. The second, “Metal-
Catalyzed Allylations”, includes primarily reactions that are traditionally clas-
sified as organometallic. This family of reactions is mechanistically rich and
has evolved independently, leading to a diverse set of transformations that
largely involve 7*-bound intermediates along with Sy2’ displacement reac-
tions. Chapter 13 entitled “Chiral Carbanions” could have included some
of the reactions involving organometallic allylation reagents, as some of
these can likewise be considered carbanionic. However, the term chiral car-
banions typically conjures up a specific class of transformations that involve
primarily organolithium reagents, and thus, this serves as the organizing
point. Additionally, a collection of metal-catalyzed, enantioselective carbome-
tallation reactions of olefins have been incorporated in this chapter. Chapter
15 groups cyclopropanation and C-H activation processes, as these two reac-
tion classes seem to have evolved hand-in-hand. Admittedly, a shortcoming
of the organization we adopted is that there were transformations that were
difficult to classify within any of the designated chapters and did not warrant
an entire chapter. We were faced with either excluding material or accepting
a poor fit. This is a situation where the use of asides proved helpful.

The early development of organic chemistry, during which many of the
concepts and terms arose, predates the current advances in instant commu-
nications. The field of stereochemistry is replete with nomenclatural nuan-
ces. The reader is encouraged to consult both Gawley and Aube’s book
“Principles of Asymmetric Synthesis” [9] as well as Helmchen’s introduction
in Volume 1 of “Stereoselective Synthesis” [10] for accurate and proper treat-
ment of definitions and usage of terms relating to stereochemistry. There
are terms that have firmly anchored themselves in the field despite the
fact that it is commonly held that they are to be frowned upon. Although
they are formally incorrect, they do seem to have the characteristic of readily
conveying a meaning or capturing a concept in a unique way, which has con-
tributed to their common usage. In some respects, the extent to which these
transgressions are tolerated or discouraged have acquired a geographical
component. Anyone who has experienced the North American and Euro-
pean cultures will recognize that there are differences in the usage of no-
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menclature. This is most obvious in the use of terms such as stereochemis-
try vs. configuration, but there are many others: (E)- and (Z)- versus trans-
and cis-enolates, and conformation versus conformer. There are even differ-
ences in the way in which some of the concepts are taught (i.e. Fiirst-Platt-
ner rules versus diaxial attack in cyclohexene). Even name reactions are not
sacrosanct: the anglophile’s Eschweiler—Clarke is often referred to as the
Leuckart—Wallach in the German-speaking world, even if the two are subtly
different. There are ongoing polemics; for example, consider the Hajos—
Parrish versus Eder-Hajos—Parrish—Sauer-Weichert reaction. Ultimately, we
have made every effort to lucidly and effectively communicate reactions
and concepts employing proper terminology and usage, without overtly re-
stricting ourselves. As an example, the difficulties with the nomenclature
of enolates in discussing the mechanism of the aldol reaction is well
known. A given geometric isomer of an ester enolate will bear different des-
ignators ((Z)- versus (E)-) simply as a function of whether it incorporates a
lithium or sodium counterion. This is an unfortunate consequence of
rules because the stereospecific (another commonly misused term) correla-
tions between enolate geometry and relative configuration of the products
that ensues from the Zimmerman-Traxler transition state is blurred by
this nomenclatural inconvenience. We have retained the (E)-/(Z)- nomencla-
ture, however, we have defaulted to the use of cis- and trans- designators
when warranted by the discussion at the risk of being inconsistent.

In the field of literary criticism [11], it has been claimed that the true clas-
sics can only be identified when a language has matured and reached its pin-
nacle, when any further refinement is impossible. In this construct, a vi-
brant discipline has many high points, but cannot be said to possess a
true closed set of classics, because to designate the classics implies subse-
quent decline. We are convinced that the science of stereoselective synthesis
is in fact far from mature. The number of asymmetric transformations re-
ported continues to grow exponentially, transformations that would have
been undreamed of a mere decade ago. Many cannot be adequately ex-
plained with existing theory, underscoring the fact that much remains out-
side of our current grasp of the field. Indeed, one of the most difficult things
we had to deal with in completing the book was when to stop incorporating
new reports appearing in the literature, truly an affirmation of the health of
the discipline.

Despite our attempts at trying to be inclusive, there is no doubt we have
overlooked examples that certainly merit consideration as classics. We
close with a quote by Faraday written in 1853, which was brought to our at-
tention by Professor Jack Dunitz. It is a quote that is truer than ever today,
and we use it [12] to apologize to anyone whose work we have overlooked:

“I very fully join in the regret that scientific men do not know more perfectly what
has been done, or what their companions are doing; but I am afraid the misfor-
tune is inevitable. It is certainly impossible for any person who wishes to spend a
portion of his time to chemical experiment, to read all the books and papers that
are published in connection with his pursuit; their number is immense, and {(...)
most persons (...) are quickly induced to make a selection in their reading, and
thus, inadvertently, at times, pass by what is really good.” [13]

XVil
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