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Series Editor’s Preface

The possibility of modifying materials using electrical discharges has fascinated
mankind ever since he observed the results of lightning striking objects in nature.
We do not, of course, know when the first observation took place, but we may be
reasonably sure that it was a sufficiently long time ago that many millennia had
to pass before electricity was “tamed,” and subsequently put to work modifying
materials in a systematic, “scientific” way—as exemplified by Humphry Davy’s
electrolysing common salt to produce metallic sodium at the Royal Institution
in London.

But these are essentially faradaic processes (named after Davy’s erstwhile
assistant Michael Faraday), and such processes are also used extensively today
for (micro)machining, as exemplified by electrochemical machining (ECM).
They are relatively well known, and are applicable to conducting workpieces.
Far less well known is the technology of what is now called spark-assisted chemical
engraving (SACE), in which the workpiece is merely placed in the close vicinity
of the pointed working electrode, and is eroded by sparks jumping across the
gas bubbles that develop around the electrode to reach the electrolyte in which
everything is immersed, the circuit being completed by the presence of a large
counter-electrode.

This technology can therefore be equally well used for workpieces made from
non-conducting materials such as glass, traditionally difficult to machine, especially
at the precision microlevel needed for such applications as microfluidic mixers and
reactors. The development of attractive machining technologies such as SACE
is in itself likely to play a decisive part in the growth of microfluidics-based
methods in chemical processing and medical diagnostics, to name just two
important areas of application.

Since, as the author very correctly points out, knowledge about non-faradaic
ECM methods is presently remarkably scanty within the microsystems community,
this book is conceived as a comprehensive treatise, covering the entire field,
starting with a lucid explanation of the physicochemical fundamentals, and
ending with a thorough discussion of the practical questions likely to be asked,
and an authoritative exposition of the means to their resolution.

I therefore anticipate that this book will significantly contribute to enabling
the rapid growth of micromachining of non-conducting materials, for which
there is tremendous hitherto unexploited potential.

Jeremy Ramsden

Cranfield University, United Kingdom
December 2008
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Preface

Micromachining using electrochemical discharges is a fairly new and still
largely unknown micromachining technology for glass and other non-conductive
materials, like composites for example. While first reports go back to the end
of the 1950s in Japan, it is only recently that the fundamental phenomenon
behind the process has been elucidated. Paradoxically, one of the main effects,
the electrochemical discharges, has been known for more than 150 years, and
was used previously for various technical applications ranging from X-ray
imaging to wireless telegraphy. However, today only a very specialised research
community is aware of it.

Even though micromachining using electrochemical discharges has been known
for a half a century, so far, no industrial application is available, and it is only
quite recently that a systematic investigation about the process’s parameters
has begun in earnest. The interest in micromachining with electrochemical
discharges witnessed a renaissance a few years ago. Significant work on the
fundamental and application side were made, some of which showed the highly
promising potentials of this technique. In the growing field of microfluidics this
micromachining technology could become a very useful tool for simple and
rapid prototyping. Its capacity for machining high aspect ratio structures also
makes the technique very interesting for microdevice connections.

This book is a first attempt to collect the state-of-the-art knowledge on
micromachining using electrochemical discharges and to establish the fundamentals
of this exciting technology. For glass material, the degree of knowledge reached
a level high enough to allow several interesting applications. For other materials,
work is still needed before applications may emerge. This monograph will hopefully
contribute and stimulate new research activities and applications. The author
is convinced that the great potential of electrochemical discharges is far from
being exploited completely. For example, it is only recently that a completely
new field was opened by showing that these phenomena could be used to
synthesise metallic nanoparticles.

In preparing this book I benefited from discussions with my colleagues and
coworkers. It is not possible to mention all of them here. I would like to express
in particular my appreciation to Prof. Dr. Hannes Bleuler who gave me the
great opportunity of working in his group over the course of many years; to
Dr. Hans Langen who introduced me to the field of micromachining with
electrochemical discharges; to Prof. Dr. Christos Comninellis who revealed to me
many secrets of electrochemistry; to Dr. hab. Philippe Mandin who initiated
me to mutli-phase flow simulations; and to Prof. Dr. Max Hongler who guided
me in my researches in non-linear dynamics. I would like to also thank the
whole Department of Mechanical and Industrial Engineering from Concordia
University, who offered me an excellent and stimulating working environment.
A great thank you as well to my current research group who in the recent two
years worked out several important results adding definitively an important
contribution to the present book.
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I would like to thank William Andrew Inc. for giving me the opportunity to
write this book, and for their help during all the phases of the manuscript,
making publication possible.

Last but not least I would like to thank my spouse, Evgenia, and my children,
Alexandre and Sandra, for their patience and understanding. Without their
support this book would never have been possible.

The research of the author in the field of electrochemical discharges is
sponsored by the Swiss Foundation of Science, the Natural Sciences and
Engineering Research Council of Canada, and the Fonds Québéquois pour la
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1 Machining with Electrochemical
Discharges—An Overview

Since the very beginning of history, and even prehistory, humanity has invested
a lot of effort in developing the skill of processing materials. There is no need
to present the fundamental importance of the capability of machining in any
technology. Any new technology requires new machining skills. In the last
century, the need for using more and more specialised materials (e.g., silicon,
composites, or ceramics) greatly increased the already large arsenal of machining
technologies.

The last century also saw the birth of micromachining, in particular
micromachining of silicon. At present, a huge variety of micromachining techniques
are available for silicon. A similar situation exists for electrically conductive
materials, where, in particular, electrochemical machining (ECM) and electrical
discharge machining (EDM) are two very powerful tools available. However,
several electrically non-conductive materials are also of great interest for many
applications. Glass and composite materials are two examples. The technical
requirements for using glass in microsystems are growing. Medical devices
requiring biocompatible materials are only one of many examples.

The importance of glass is also growing in the field of microelectromechanical
systems (MEMS). The term MEMS refers to a collection of microsensors and
actuators. MEMS emerged in the 1990s with the development of processes
for the fabrication of integrated circuits. In particular, Pyrex® glass is widely
used because it can be bonded by anodic bonding (also called field-assisted thermal
bonding or electrostatic bonding) to silicon. Glass has some very interesting
properties such as its chemical resistance or biocompatibility. It is amorphous
and can therefore be chemically attacked in all directions. As glass is transparent,
it is widely used in optical applications or in applications where optical
visualisation of a process is needed. Some promising applications for glass in
the MEMS field are microaccelerometers, microreactors, micropumps, and
medical devices (e.g., flow sensors or drug delivery devices).

A representative example in which glass-to-silicon bonding is used are
bulk micromachined accelerometers [121]. In this case, glass serves several
functions:

o provides a seal and the desired damping;
e can be used as a capacitor when a metal plate is placed on it;
e can be an overload protection.

Rolf Wiithrich, Micromachining Using Electrochemical Discharge Phenomenon, 1-9,
© 2009 William Andrew Inc.



2 1: OVERVIEW

The use of glass is also very common in other sensors than accelerometers
using capacitive sensing technology.

1.1 Spark-Assisted Chemical Engraving

Various techniques are available to micromachine glass. However, one of the
main limiting factors in incorporating glass into microdevices is its limited
machinability. A similar situation exists for other hard-to-machine materials
such as ceramics and composite materials. A possible answer to these issues
could be spark-assisted chemical engraving (SACE), or electrochemical discharge
machining (ECDM).

1.1.1 What is SACE?

SACE makes use of electrochemical and physical phenomena to machine
glass. The principle is explained in Fig. 1.1 [128]. The workpiece is dipped in
an appropriate electrolytic solution (typically sodium hydroxide or potassium
hydroxide). A constant DC voltage is applied between the machining tool or
tool-electrode and the counter-electrode. The tool-electrode is dipped a few
millimetres in the electrolytic solution and the counter-electrode is, in general,
a large flat plate. The tool-electrode surface is always significantly smaller
than the counter-electrode surface (by about a factor of 100). The tool-electrode
is generally polarised as a cathode, but the opposite polarisation is also
possible.

When the cell terminal voltage is low (lower than a critical value called
critical voltage, typically between 20 and 30 V), traditional electrolysis occurs

Counter-electrode (+)
(large electrode)

Tool-electrode (-)

Voltage supply

Glass sample

Figure 1.1 Principle of SACE technology: the glass sample to be machined is dipped in
an electrolytic solution. A constant DC voltage is applied between the tool-electrode and
the counter-electrode. Reprinted from [128] with permission from Elsevier.
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(@)

(d)

Figure 1.2 Successive steps towards the electrochemical discharge phenomena:

(a) 0 V; (b) 7.5 V; (c) 15 V; (d) 40 V. Two electrodes are dipped into an electrolyte.
The terminal voltage is progressively increased from 0 to 40 V. At around 25 V a gas
film is formed around the cathode, and at around 30 V the electrochemical discharges are
clearly visible. Reprinted from [128] with permission from Elsevier.

(Fig. 1.2). Hydrogen gas bubbles are formed at the tool-electrode and oxygen
bubbles at the counter-electrode depending on their polarisation and the
electrolyte used. When the terminal voltage is increased, the current density
also increases and more and more bubbles are formed. A bubble layer develops
around the electrodes. As presented in Chapter 3, the density of the bubbles
and their mean radius increase with increasing current density. When the
terminal voltage is increased above the critical voltage, the bubbles coalesce
into a gas film around the tool-electrode. Light emission can be observed in the
film when electrical discharges, the so-called electrochemical discharges, occur
between the tool and the surrounding electrolyte. The mean temperature of
the electrolytic solution increases in the vicinity of the tool-electrode to about
80-90°C. Machining is possible if the tool-electrode is in the near vicinity of
the glass sample (Fig. 1.3). Typically, the tool-electrode has to be closer than
25 um from the workpiece for glass machining to take place.

However, things are not as simple as they seem. The gas film around the
tool-electrode is not always stable. Microexplosions may occur destroying the
machined structure locally. During drilling of holes, the local temperature can
increase to such an extent, resulting in heat affected zones or even cracking.

1.1.2 Machining Examples

SACE technology can be used for flexible glass microstructuring. Channel-like
microstructures and microholes can be obtained. Two examples are illustrated
in Fig. 1.4. The channel microstructure was machined with a cylindrical 90 um
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Figure 1.3 Close-up view of micromachining with electrochemical discharges.

Dot WD Dxp b—————————— 1 mm ol Mugn el wD Vb 500

S84

Figure 1.4 Micrographs of a SACE-machined channel-like structure (left) and a
microhole (right) in Pyrex® glass. Reprinted from [128] with permission from Elsevier.

diameter tool-electrode at an applied voltage of 30 V. Machining was done in one
step with a tool speed of 0.05 mm/s. The channels are about 100 um wide and
200 um deep. The microhole illustrates the possibility of machining relatively
deep structures. In this case the microhole is 1 mm deep.

The most interesting characteristic of SACE is its flexibility. No mask is
needed, and just as in traditional machining, the desired structure can be
machined directly. A typical four axes SACE machining facility is shown in
Fig. 1.5. This facility includes two processing units. The first unit, called the
WEDG unit, allows the manufacturing of tools with different shapes using
the wire electrical discharge grinding (WEDG) technology [85]. The second
processing unit is the SACE-unit, in which glass machining is done. The unit
is designed for a maximum of 10 inch glass wafers. An interesting aspect of this
machining prototype is the possibility to machine glass and the tool-electrodes



1: OVERVIEW

Figure 1.5 Overview of a SACE prototype (left) and close-up view of the processing
units (right) [32,123].

needed in the same facility, which avoids alignment problems and offers more
flexibility.

1.1.3 A Short Historical Overview

SACE was first developed in Japan in the late 1950s with some applications
in diamond die workshops (Table 1.1). The paper by Kurafuji and Suda, in
1968, was one of the pioneering reports about this new technology, which they
termed electrical discharge drilling [76]. The authors demonstrated that it was
possible to drill microholes in glass, and they studied the effect of electrolyte
chemical composition and tool-electrode material. The machining mechanism
was open to debate and questions were raised about the similarities with EDM
and ECM. This debate went on five years, until the paper by Cook et al. [21].
The authors stressed that the process described by Kurafuji and Suda is
different from EDM and ECM and suggested a new name for it, discharge
machining of non-conductors. They showed that the process can be applied to
a broad range of non-conductive materials and investigated further the effect
of the electrolyte. The authors also quantified drilling rates as a function of the

Table 1.1 Some Important Dates in the History of SACE

1968 First report by Kurafuji and Suda

1973 First characterisations by Cook et al.

1985 Extension to travelling wire-ECDM by Tsuchiya et al.
1990 First functional devices

1997 First models by Ghosh et al. and Jain et al.

2000 Study of SACE in the light of electrochemistry

2004 SACE and nanotechnology




