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SUMMARY

This monograph contains the material presented in 1973 in the Colloquium
on Probability Theory organized jointly by the Mathematical Centre and the
Institute for Applications of Mathematics of the University of Amsterdam.

The central theme is the investigation of the existence of optimal
policies or optimal strategies in various discrete time dynamic pro-

gramming problems.

In section 2 some well-known theorems in Markov potential theory are
generalized to collections of Markov chains. Most of the definitions and

results in this section also play an important role in the sequel.

In sections 3 and 4 a discrete time optimal control problem is in-
vestigated. It is proved that the value function is the minimum of the
cp - excessive functions that majorize the reward function. Further it is
shown that a strategy is optimal if and only if it is thrifty and equal-
izing.

Section 5 deals with a semi-Markov decision process having at least
one state for which the expected cost until the system enters this state
is uniformly bounded over all policies. Using results from the foregoing
sections, we obtain a rather general condition guaranteeing the existence

of optimal policies with respect to the average return criterion.

In section 6 some theorems on dynamic programming problems with total

return criterion are collected.

Using results from section 6, we answer in section 7 some questions
raised in connection with the notions introduced in section 2. The section
is concluded with a theorem on the existence of optimal strategies for

problems with a finite state space.

In section 8 the notions communicating and recurrent system are in-
troduced. Similar to the notions communicating and recurrent class for one

Markov chein, they play a basic role in Markov decision processes.

It is proved in section 9 for a wide class of sequential decision
problems that the optimal stopping time is exponentially bounded under the
optimal policy.



vi

In section 10 we investigate again the discrete time dynamic program-
ming problem with the supremum of the expected return per unit time as op-
timality criterion. If the invariant probability measures depend continu-
ously on the decision rule or if they form a tight collection and the sys-

tem is recurrent then there exists a stationary optimal policy.

A simultaneous Doeblincondition is investigated in section 11.

In section 12 it is pointed out that this notion provides the connec-
tion between conditions given in the literature and those of the sections

10 and 11.

In section 13 we collect several results announced in the foregoing
sections. It is proved there that randomization does not increase the value
function. Finally some theorems on the existence of weak and strong nearly

optimal policies are given.
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1. INTRODUCTION

In this monograph we are mainly concerned with a dynamic system which
at times t = 0,1,... is observed to be in one of & possible number of
states. Let E denote the countable space of all possible states. If at time
t the system is observed in state i then a decision must be chosen from a
given set P(i). The probability that the system moves to a new state j (the
so-called transition probability) is a function only of the last observed
state i and the subsequently taken decision. In order to avoid an over-
burdened notation we shall identify the decision to be taken with the prob-
ability measure on E that is induced by it. Thus for each i € E the set
*) Let P be the set of all

stochastic matrices P with p(i,.) € P(i) for each i € E. Hence P has the

P(i) consists of probability measures p(i,.).

product property: with P, and P, the set P also contains all those P with
for every i € E in the ith row of P either the ith row of P1, or the ith

row of P2.

A policy R for controlling the system is a sequence of decision rules
for the times t'= 0,1,..., Where the decision rule for time t is the in-
struction at time t which prescribes the decision to be taken. This in-
struction may depend on the history i.e. the states and decisions at times
0,15...,t-1 and the state at time t. When the decision rule is independent
of the past history except for the present state then it can be identified

with a P € P. A memoryless or Markov policy R is a sequence P ,P1,... e P,

0

where Pt denotes the decision rule at time t. Pt also gives the transition

probabilities at time t.

In this monograph there are only a few places where non-memoryless
policies are used. We need them to show that the value function is cp-super-
harmonic (see theorem 3.1). Theorem 13.2 says that when P contains all
randomizations then the supremum over all memoryless policies equals the
supremum over all policies. Hence in this case the value function may be

defined as the supremum over the memoryless policies.

Since the law of motion of the dynamic system can be described by a

non-stationary Markov chain when a memoryless policy is used, we prefer to

*)

We allow that with positive probability the system "breaks down" or
"disappears", so p(i,j) 2 0, i,j € E and p(i,E) := ) p(i,j) <1, i € E.
JjeE



introduce a decision process as a collection of non-stationary Markov
chains (for a more general foundation of decision processes see
[Hinderer]). A memoryless policy which takes at all times the same decision
rule i.e. P o= (P,P,...), P e P is called a stationary policy and induces

a stationary Markov chain.

One of the features of this monograph is the generalization of well-
known results for one Markov chain to a collection of Markov chains. We
give some examples. In theorem 8.6 it is proved that the maximal average
expected reward does not depend on the initial state given that the system
is recurrent. This is a direct generalization of the well-known theorem

that each excessive function on a recurrent chain is constant.

The main assumption in theorem 5.1 (relation 5.1.1) is nothing else
than a condition guaranteeing that all Markov chains are uniformly positive
recurrent. This condition is a direct generalization to a collection of
Markov chains of a so-called Foster criterion or a Liapunov function crite-

rion as it is called elsewhere (see subsection 2.7).

Finally the simultaneous Doeblin condition (see section 11) is a
straightforward extension to a collection of Markov chains of the well-

known Doeblin condition.

Nowadays potential theory for Markov chains is well developed. A
systematic treatment of potential theory for dynamic systems would in our
opinion be desirable. Although the second part of the title of this mono-
graph suggests more, our contribution to potential theory for dynamic sys-
tems consists only in the introduction of some useful terminology and the
derivation of some interesting results (sections 2 and 7). The reason is
that we were mainly interested in dynamic programming. It seems that many

interesting questions were left untouched.

When in state i decision p(i,.) is taken then an immediate cost de-
pending on i and p(i,.) is incurred *) | Let cP(i) be the immediate cost
when taking decision p(i,.) (the ith row of matrix P) in state i and write
cp for the vector with i*B component cP(i). Note that if P,Q € P with
p(i,.) = q(i,.) then cP(i) = cQ(i).

The expectation of the cost at time n when starting in state i1 at time

e It is common to minimize when speaking of costs. We shall always maxi-
mize. The reason is that along with a cost structure also a reward
function shall be used (see section 3).



zero and using policy R = (PO,P1,...) will be denoted by'Ei c(gn), where
]

R
*) . . : .
x ) is the state at time n. E. c(x ) denotes the vector with ith compo-
nent Ei R c(x ) (for stationary policy P we writeIEP[...] instead of
s n

I%u[...]). It is easily seen that

E. c(gn) = Po Po... Pn_1 c

Pn'

In some of the following sections it is assumed that the cost function
is a charge structure (see definition 2.12). In dynamic programming a
weaker assumption like "all relevant expectations do not attain the value
plus infinity" could be used. Our gain is a greater simplicity in the
statements of the results. Also a nice implication is that the well-known
theorem in optimal stopping remains valid: the value function is the mini-

mum of the excessive functions that majorize the reward function.

The basic reason for taking the state space a countable set was that
many of the problems which arise in general state spaces already appear in
the countable state space. The countable state space does not have the
"compactness" properties of the finite state space and with the countable
state space one avoids the "measurability" questions of more general state
spaces. As to the generalization of the results of this monograph, some can
be generalized in a straightforward way, some results cannot be generalized

and for the other results we do not know.

In an important part of the literature on Markovian decision processes
it is assumed that for each state the set of available decisions in that
state is a finite set. Usually randomized decisions i.e. convex combina—
tions of the available decisions with a corresponding convex combination of
the costs as the immediate cost, are allowed. We prefer to start with gen-
eral sets of decisions P(i), i € E, which may contain all randomizations.
As long as there are no constraints introduced the distinction between
randomized and non-randomized decisions is in our opinion not very im-

portant (cf. section 13).

In several places we need a notion of convergence on P. A sequence

*)

Random variables are underlined.



Pn, n = 1,2,... 1is convergent to P if lim pn(i,j) = p(i,j) for all i and
—-00

n
Jj. In this case, we shall say that 1im Pn = P. P with this topology is a

. : N
metric space (see section 13).

The identification of the set of actions with the set of probability

measures and several notations are adopted from [Bather].

The number of papers on dynamic programming is overwhelming. Only
those books or papers referred to in this monograph, or those that proved
important for the author's study of these topics are included in the
bibliography.

It is difficult to provide a readable and consequent notation for the
topics studied. The list of notations may be helpful to overcome possible

notational shortcomings.



2. POTENTIALS AND EXCESSIVE FUNCTIONS

The aim of this section is twofold. First to generalize some well-
known theorems in Markov potential theory (theorems 2.9 and 2.20 to 2.23).
The second intention of this section is to introduce notions which, in our
opinion, are basic in the study of discrete time dynamic progremming prob-
lems. Further we collect in this section definitions and results which play

an important role throughout this monograph.

Each function used in this monograph is assumed to be a finite and
real valued function. Moreover when writing Ej f(gn) or P'f it is tacitly

assumed that

I p7(i,3)|£(3)| < = for a1l i ¢ E.
J

2.1. DEFINITION. Function w is a charge with respect to P if

] )l = ] Pl <.

n=0 n=0

2.2. DEFINITION. Function f is a potential w.r.t. P if there exists a
charge w w.r.t. P such that

-
f= Z P'v.
n=0

So function w is called & charge if the sum z:=0 P is well-defined. This

sum is then a potential.

2.3. DEFINITION. Function f is a

c - super >
c - harmonic function w.r.t. P Zf f = ¢ + Pf.
c - sub &

2.L4. DEFINITION. Function f is a c - excessive function w.r.t. P if

(2.4.1) c 28 q charge w.r.t. P
00 I

(2.4.2) Zn=0 PPc < f

(2.4.3) c +Pf<f.,

So a c-superharmonic function with ¢ a charge satisfying relation (2.4.2)



is a c-excessive function. To see that c-excessive functions form an in-
teresting class one should realize that when f is the value function of &
stopping problem for a Markov chain with matrix of transition probabilities
P and "cost" function c then relations (2.4.2) and (2.4.3) are fulfilled.
This can be seen by noting that the left-hand side of (2.4.2) denotes.the
"return" in case we will never stop which is less than the value function.
The left-hand side of (2.4.3) denotes the "return" if we wait one period

and then continue in an optimal way. This may be a sub-optimal policy.

2.5. THEOREM. Function f is a potential w.r.t. P iff wp i= f-Pf s a
charge w.r.t. P and lim P°f = 0.

n-eo

Z=O P%. Then by interchanging

the order of summation (w is a charge) it follows that

PROOF. Suppose w is a charge such that f = z

n+1w) -

£-Pf = (Pw-P

I~ 8

n=0

Hence Wp =W and consequently Vi is a charge. By iterating the equality

Vp + Pf=°¢

N times we find the equality

+Pup kL Py & P w7,

(2:5:1) w. P

P

Since f = Z:‘O inP, it then follows that 1lim P°f = O.*)
= ) e

To show the converse, we note that X:—O inP

is a charge. Moreover, it follows from (2.5.1) and 1lim P°f = 0 that this
n->o

is a potential since Vp

potential equals f. [

It can be seen from the above proof that a potential uniquely deter-

mines its charge (if f is a potential then f-Pf is its charge).

*)

For fn’ n=1,2,... a sequence of functions, we write lim fn =0 if

lim £ (i) = 0 for all i € E. i
n->e n



2.6. THEOREM. If to ¢ 2 O there exists a nonnegative c - superharmonic

function v w.r.t. P then ¢ is a charge w.r.t. P and z:=0 e < v.
PROOF. The definition of a c-superharmonic function gives
c+ Pv <,

By iterating this inequality N times we find

¢+ Pc+ ...+ PNc + PN+1v < Ve

Since v 2 0 it follows then

X PncSv<°°
n=0

and consequently c is a charge. 0

As an illustration of theorem 2.6 we shall prove that relation (2.7.1)
is sufficient for a Markov chain to be positive recurrent. In this way we
recover the condition for positive recurrence as can be found in [Foster,
theorem 2]. For a countable state space a condition similar to (2.7.1) can
be found in [Kushner, theorem 8.6.5.7, p. 211]. There the condition is

called a Liapunov function criterion.

2.7. FOSTER CRITERION - LIAPUNOV FUNCTION CRITERION

The Markov chain with transition matrix P is positive recurrent if
there exists a state io and a nonmegative solution y of the inequalities

(2.7.1) e+ Py <y,

where e is defined by e(i) = 1 for all i and P is the colum-restriction
of P to E\{iO} Z.e.

~ 0 for j = iO
pli,j) :=

p(isj) for j # io.



PROOF. Let T denote the reentry time of {io}, i.e. T is the least n > 0

if any with x =i,endr== if there is no such n. Then it is an easy
check that

(2.7.2) Pl > nl = Ple(i).
According to a well-known lemma

) Pi[l > nl.

f2.7.3) E.[1]
i
n=0

By (2.7.2) and (2.7.3) we have

} Ple(i).
n=0

(2.7.%) E,[x]
The Markov chain is a positive recurrent class ([Chung, p. 311) if

{2:7:5) ]Ei[lj < o for all i € E.

. . . .. L a4 .
To prove this it is by (2.7.4) sufficient to show that zn= Pe < » (i.e.

0
all components are finite). Now theorem 2.6 says that relation (2.7.1)

implies that e is a charge w.r.t. P. O

A Liapunov function criterion for the existence of an invariant prob-
ability measure in the case of a Markov process with a metric state space

is given in [Hordijk and Van Goethem].

2.8. THEOREM. If there exists a c - superharmonic function f w.r.t. P, for

¢ a majorant of a charge then

&. h := lim P°f exists and == < h(i) < ® for all i € E
Do
b. Zf h(i) > == for all i € E then c s a charge w.r.t. P

*)

c. Ifh=20 then f 78 c -excessive w.r.t. P.

*)

We write x 2 y if x(i) 2 y(i) for all i and denote O for the vector with
each component equal to O.



