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Preface

Contemporary communication systems and computer networks usually have a
rather complex structure and therefore require creating more complicated mathemat-
ical models of queues and developing new approaches for modeling and asymptotic
investigation. The main features of these systems are the stochasticity of the processes
describing the behavior in time, influence of various internal and external events which
may change (switch) the behavior of the system, the presence of different time scales
for different subsystems (very fast internal computer time and user interaction time,
etc), and the hierarchic structure. Wide classes of such systems can be adequately
described with the help of so-called “switching” stochastic processes.

Switching processes (SP) have been developed by the author for describing the
operation of stochastic systems with the property that their development in time varies
spontaneously (switches) at some random points of time which may depend on the
previous system trajectory. According to Kolmogorov, these processes can be called
random processes with discrete interference of chance or with discrete components.
Processes of this type often appear in the theory of queueing and communication sys-
tems and networks, branching, population and migration processes, in the analysis
of stochastic dynamical systems with random perturbations, random movements and
various other applications.

SP can be represented as a two-component process (x(t),((t)), t > 0, with the
property that there exists a sequence of Markov points of time t; < 2 < --- such that
in each interval [ty t;41), 2(t) = x(tx), and the behavior of the process ((t) in this
interval depends only on the value (z(tx), {(tx)). 2(t) is a discrete switching compo-
nent and the points of time {;} are called switching times. SP can be described in
terms of constructive characteristics and is very suitable in analyzing and asymptotic
investigating of stochastic systems with “rare” and “fast” switching.

The class of SPs is the natural generalization of well-known classes of random
processes such as Markov processes that are homogenous in the 2nd component, pro-
cesses with independent increments and Markov or semi-Markov switches, piecewise
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Markov aggregates, and Markov processes with Markov and semi-Markov switching
(random evolutions). Wide classes of queueing models can be described in terms of
SPs. The class of switching queueing models includes, as examples, various types of
state-dependent queueing systems and networks in a Markov or semi-Markov envi-
ronment, queueing models under the influence of flows of external events or inter-
nal perturbations, unreliable systems, retrial queues, hierarchic queueing systems, etc.
Therefore, the asymptotic theory of SPs can be effectively applied to the investigation
of wide classes of queueing systems and networks.

In the book several large directions of asymptotic results for SP are investigated
and successfully applied to various classes of switching queueing models.

The first direction is devoted to the limit theorems of averaging principle (AP)
and diffusion approximation (DA) type in the case of fast switching. Theorems on the
convergence of the trajectory of an SP to a solution of a differential equation (AP) and
the convergence of the normalized difference to a diffusion process (DA) are proved
for different subclasses of SP: recurrent processes of a semi-Markov type (RPSMs),
processes with semi-Markov switching and general SP with feedback between both
components. The results are based on the investigation of the asymptotic properties of
a special subclass of SP — RPSMs theorems on the convergence of recurrent sequences
with Markov switching to the solutions of stochastic differential equations and the
convergence of superpositions of random functions.

This class of theorems is the basis of a new approach to the investigation of tran-
sient phenomena for service processes in overloading queueing systems and Markov
and semi-Markov type networks, retrial queues, etc. Numerous examples for the illus-
tration AP and DA for queueing models are considered.

The second direction is devoted to the limit theorems for SP with slow switching.
Models of this type appear at the investigation of hierarchic systems in different scales
of time (slow and fast). The conditions, when an SP of a rather complicated struc-
ture can be approximated by an SP of a simpler structure, in particular, by a Markov
or semi-Markov process, are established and various applications to processes with
Markov and semi-Markov switching are considered. The method of investigation uses
the results on the convergence of the accumulating type processes constructed on the
trajectory of Markov or semi-Markov process satisfying some form of the asymp-
totic mixing condition in triangular scheme to processes with independent increments
(homogenous or non-homogenous in time). A special class of non-homogenous in
time Markov processes with transition probabilities slowly varying in the expanding
time scale is introduced. These processes have quasi-ergodic properties and are called
quasi-ergodic Markov processes. Under rather general conditions it is proved a Pois-
son approximation of the flows of rare events governed by a Markov process satisfying
an asymptotic mixing condition, in particular with the state space forming a so-called
S-set (asymptotically connected set), and the exponential approximation of the exit
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time from S-set. Special attention is paid to the analysis of the flow of rare events
defined on stochastic systems satisfying asymptotic mixing conditions, in particular,
with state space forming an S-set. These models naturally appear at study queueing
models with asymptotically “fast” service (or low traffic). Applications of a method
of S-sets are considered for different classes of queueing systems.

Using these results and the results on the convergence of SP with slow switching,
the models of the asymptotic aggregation of the state space of Markov and semi-
Markov processes (homogenous and non-homogenous in time) are investigated.
These results create the basis for a theory of the asymptotic decreasing dimension and
aggregation (consolidation) of the state space of stochastic systems. Special attention
is paid to the hierarchic Markov and semi-Markov systems operating in different
time scales. These systems under rather general conditions can be approximated by
a simpler Markov system with averaged transition characteristics. The applications
to the asymptotic aggregation of a state space and approximation by Markov models
with averaged characteristics are considered for different classes of Markov and
non-Markov queueing models in a random environment.

The asymptotic aggregation of SP in different time scales is the next natural level
of development. The conditions of the convergence of SP to solutions of differen-
tial and stochastic differential equations with coefficients depending on a limiting
aggregated Markov or semi-Markov process are obtained. Various applications to the
asymptotic aggregation of overloaded queueing systems and networks under the influ-
ence of hierarchic random environment in different time scales are considered.

The results of the book were obtained while the author was working at Kiev
University as Head and Professor of Applied Statistics Department at the Faculty of
Cybernetics (1978-2002) and also as Visiting Professor at Bilkent University, Ankara
(1997-2002). Some results were reflected in different courses on stochastic processes
and queueing models that the author taught at Kiev University and Bilkent University
for graduate and post-graduate students.

The book contains many practical examples of asymptotic results for queueing
models and is directed to applied mathematicians and researchers, post-graduate stu-
dents and engineers working in the field of stochastic systems, queueing models and
applications to computer sciences, biology, ecology, physical and social sciences.
Some theoretical results are illustrated by examples of simulation in R.

The author is sincerely grateful to professors Vladimir Korolyuk, Anatoli Sko-
rokhod, Igor Kovalenko and Nikolaos Limnios for a fruitful long-term collaboration
and useful discussions.

Vladimir V. Anisimov
March 2008
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