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Preface

In this book we describe the basic principles, problems, and methods of clas-
sical mechanics. Qur main attention is devoted to the mathematical side of
the subject. Although the physical background of the models considered here
and the applied aspects of the phenomena studied in this book are explored
to a considerably lesser extent, we have tried to set forth first and foremost
the “working” apparatus of classical mechanics. This apparatus is contained
mainly in Chapters 1, 3, 5, 6, and 8.

Chapter 1 is devoted to the basic mathematical models of classical me-
chanics that are usually used for describing the motion of real mechanical
systems. Special attention is given to the study of motion with constraints
and to the problems of realization of constraints in dynamics.

In Chapter 3 we discuss symmetry groups of mechanical systems and the
corresponding conservation laws. We also expound various aspects of order-
reduction theory for systems with symmetries, which is often used in applica-
tions.

Chapter 4 is devoted to variational principles and methods of classical
mechanics. They allow one, in particular, to obtain non-trivial results on the
existence of periodic trajectories. Special attention is given to the case where
the region of possible motion has a non-empty boundary. Applications of the
variational methods to the theory of stability of motion are indicated.

Chapter 5 contains a brief survey of the various approaches to the problem
of integrability of the equations of motion and some of the most general and
efficient methods of their integration. Diverse examples of integrated prob-
lems are given, which form the “golden reserve” of classical dynamics. The
material of this chapter is used in Chapter 6, which is devoted to one of
the most fruitful parts of mechanics — perturbation theory. The main task of
perturbation theory is studying the problems of mechanics that are close to
problems admitting exact integration. Elements of this theory (in particular,
the well-known and widely used “averaging principle”) arose in celestial me-
chanics in connection with attempts to take into account mutual gravitational
perturbations of the planets of the Solar System. Adjoining Chapters 5 and 6
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is Chapter 7, where the theoretical possibility of integrating the equations of
motion {in a precisely defined sense) is studied. It turns out that integrable
systems are a rare exception and this circumstance increases the importance
of approximate integration methods expounded in Chapter 6. Chapter 2 is
devated to classical problems of celestial mechanics. It contains a description
of the integrable two-body problem, the classification of final motions in the
three-body problem, an analysis of collisions and regularization questions in
the general problem of n gravitating points, and various limiting variants of
this problem. The problems of celestial mechanics are discussed in Chapter 6
from the viewpoint of perturbation theory. Elements of the theory of oscilla-
tions of mechanical systems are presented in Chapter 8.

The last Chapter 9 is devoted to the tensor invariants of the equations
of dynamics. These are tensor fields in the phase space that are invariant
under the phase flow. They play an essential role both in the theory of exact
integration of the equations of motion and in their qualitative analysis.

The book is significantly expanded by comparison with its previous edi-
tions (VINITI, 1985; Springer-Verlag, 1988, 1993, 1997). We have added
Ch. 4 on variational principles and methods (§4.4.5 in it was written by
S. V. Bolotin), Ch. 9 on the tensor invariants of equations of dynamics, §2.7 of
Ch. 2 on dynamics in spaces of constant curvature, §§6.1.10 and 6.4.7 of Ch. 6
on separatrix crossings, §6.3.5 of Ch.6 on diffusion without exponentially
small effects (written by D.V. Treshchev), §6.3.7 of Ch.6 on KAM theory
for lower-dimensional tori (written by M. B. Sevryuk), §6.4.3 of Ch. 6 on adi-
abatic phases, § 7.6.3 of Ch. 7 on topological obstructions to integrability in the
multidimensional case, § 7.6.4 of Ch. 7 on the ergodic properties of dynamical
systems with multivalued Hamiltonians, and § 8.5.3 of Ch. 8 on the effect of gy-
roscopic forces on stability. We have substantially expanded §6.1.7 of Ch. 6 on
the effect of an isolated resonance, §6.3.2 of Ch. 6 on invariant tori of the per-
turbed Hamiltonian system (with the participation of M. B. Sevryuk), §6.3.4
of Ch. 6 on diffusion of slow variables (with the participation of S. V. Bolotin
and D.V. Treshchev), §7.2.1 on splitting of asymptotic surfaces conditions
(with the participation of D.V. Treshchev). There are several other addenda.
In this work we were greatly helped by S.V. Bolotin, M. B. Sevryuk, and
D. V. Treshchev, to whom the authors are deeply grateful.

This English edition was prepared on the basis of the second Russian edi-
tion (Editorial URSS, 2002). The authors are deeply grateful to the translator
E.I. Khukhro for fruitful collaboration.

Our text, of course, does not claim to be complete. Nor is it a textbook on
theoretical mechanics: there are practically no detailed proofs in it. The main
purpose of our work is to acquaint the reader with classical mechanics on the
whole, both in its classical and most modern aspects. The reader can find
the necessary proofs and more detailed information in the books and original
research papers on this subject indicated at the end of this volume.

V.I Arnold, V.V. Kozlov, A.I Neishtadt
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1

Basic Principles of Classical Mechanics

For describing the motion of a mechanical system various mathematical mod-
els are used based on different “principles” — laws of motion. In this chapter
we list the basic objects and principles of classical dynamics. The simplest and
most important model of the motion of real bodies is Newtonian mechanics,
which describes the motion of a free system of interacting points in three-
dimensional Euclidean space. In §1.6 we discuss the suitability of applying
Newtonian mechanics when dealing with complicated models of motion.

1.1 Newtonian Mechanics

1.1.1 Space, Time, Motion

The space where the motion takes place is three-dimensional and Euclidean
with a fixed orientation. We shall denote it by E3. We fix some point 0 € E3
called the “origin of reference”. Then the position of every point s in E? is
uniquely determined by its position vector 63 = r (whose initial point is 0 and
end point is s). The set of all position vectors forms the three-dimensional
vector space R®, which is equipped with the scalar product (, ).

Time is one-dimensional; it is denoted by ¢ throughout. The set R = {¢}
is called the time axis.

A motion (or path) of the point s is a smooth map A — E2, where A is an
interval of the time axis. We say that the motion is defined on the interval A.
If the origin (point o) is fixed, then every motion is uniquely determined by a
smooth vector-function r: A — R3.

The image of the interval A under the map ¢ +— r(t) is called the trajectory
or orbit of the point s.

The velocity v of the point s at an instant ¢ € A is by definition the
derivative dr/dt = #(¢) € R3. Clearly the velocity is independent of the choice
of the origin.
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Fig. 1.1.

The acceleration of the point is by definition the vector a = v = ¥ € R3.
The velocity and acceleration are usually depicted as vectors with initial point
at the point s (see Fig. 1.1).

The set E3 is also called the configuration space of the point s. The pair
(s, v) is called the state of the point, and the set E3 x R3{v}, the phase (or
state) space.

Now consider a more general case when there are n points s1, . . ., 8, mov-
ing in the space E. The set E3" = E3{s;} x .- x E3{s,} is called the
configuration space of this “free” system. If it is necessary to exclude colli-
sions of the points, then E3" must be diminished by removing from it the
union of diagonals

A= Ufs = s}

i<
Let (r1,...,r,) = r € R3" be the position vectors of the points 51, . . ., s,,.
A motion of the free system is given by smooth vector-functions r(t) =
(ri(t),...,ry(t)). We define in similar fashion the velocity
V=i‘=(l"l,...,f‘n)=(V]_,...,Vn)ER3n
and the acceleration
a=#=(¥,...,F) = (a1,...,a,) € R

The set E3™ x R3"{v} is called the phase (or state) space, and the pair
(s, V), the state of the system.

1.1.2 Newton-Laplace Principle of Determinacy

This principle (which is an experimental fact) asserts that the state of the
system at any fixed moment of time uniquely determines all of its motion
(both in the future and in the past).

Suppose that we know the state of the system (rg, vp) at an instant tg.
Then, according to the principle of determinacy, we know the motion r(t),
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t € A C R;r(tg) = rg, t(tg) = fg = vo. In particular, we can calculate
the acceleration i at the instant ¢ = tg.} Then ¥(t9) = f(to, ro, Fo), where f
is some function whose existence follows from the Newton-Laplace principle.
Since the time to can be chosen arbitrarily, we have the equation

i =f(t,r,r)

for all £. .

This differential equation is called the equation of motion or Newton’s
equation. The existence of Newton’s equation (with a smooth vector-function
f: R{t} x R*{r} x R3"{#} — R3") is equivalent to the principle of deter-
minacy. This follows from the existence and uniqueness theorem in the the-
ory of differential equations. The function f in Newton’s equations is usually
determined in experiments. The definition of a mechanical system includes
specifying this function.

We now consider examples of Newton’s equations.

a) The equation of a point in free fall in vacuum near the surface of the
Earth (obtained experimentally by Galileo) has the form ¥ = —ge., where
g ~ 9.8 m/s? (the acceleration of gravity) and e, is the vertical unit vector.
The trajectory of a falling point is a parabola.

b) Hooke showed that the equation of small oscillations of a body attached
to the end of an elastic spring has the form # = —az, a > 0. The constant
coefficient o depends on the choice of the body and spring. This mechanical
system is called a harmonic oscillator (see Fig. 1.2).

Fig. 1.2. Harmonic oscillator

It turned out that in experiments, rather than finding the acceleration f on
the right-hand side of Newton’s equations, it is more convenient to determine
the product mf = F, where m is some positive number called the mass of
the point (an instructive discussion of the physical meaning of the notion of
mass can be found in [601, 401, 310]). For example, in Hooke’s experiments
the constant ma = ¢ depends on the properties of the elastic spring, but not
on the choice of the body. This constant is called the coeflicient of elasticity.

The pair (s, m) (or (r, m), where r is the position vector of the point s)
is called a matertal point of mass m. In what follows we shall often denote a
point s and its mass m by one and the same symbol m. If a system of material

! We assume that all the functions occurring in dynamics are smooth.



