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FOREWORD

In the seven years that have elapsed since the publication of a previous collection of papers on the structural
dynamic aspects of bladed disc assemblies (ASME, 1976), there has been continued awareness of the complexity
and importance of this topic, Indeed, in the past two or three years, there has been a widespread renewal of
research activity on the vibration of bladed assemblies, including not only the structural dynamics but also the
aerodynamics aspects as well. Thus it is appropriate at this juncture to bring together a collection of papers into
the present volume in order to provide a comprehensive review of the current state of the subject.

A total of 17 papers are included in the volume, covering a wide range of studies most of which are concerned
with the particular features of assemblies of blades. They all share one common feature and that is an attempt to
prove further into, or to understand better the extremely complex characteristics which are a hallmark of most
blade vibration phenomena encountered in practice. It is not appropriate to separate these papers into distinct
categories — many of them cover a wide range of aspects — but we may review them in a general way to obtain
an overall picture of the main areas of current interest. First, we can identify a number of papers whose main ob-
jective is the development of more accurate or more refined analytical methods that seek to provide better predic-
tions of the structural dynamic characteristics of interest — namely, assembly natural frequencies and forced
response properties. This group includes the contributions from Lalanne et al, Rao & Jadvani, Ewins & Imregun,
Janecki, Chia-Fu Sheng & Mosimann, Crawley & Mokadam. Next there are three papers — by Srinivasan & Cutts,
Fu & Zhou and Wachter et al — which provide contributions from a primary experimental standpoint; presenting
detailed observations of how particular structural assemblies actually behave in practive. We should never forget
that all our analytical predictions are based on assumptions of the system’s behaviour and that these studies must
be verified and, if necessary, modified in the light of actual behaviour. For this process to be effective, advanced
and detailed experimental techniques will remain an essential tool for many years to come.

The next two papers — by Halliwell & Lit and Ford & Srinivasan — deal with the necessary process of com-
bining the structural and aerodynamic aspects for an analysis of flutter. In actual operation, almost all blade vibra-
tion phenomena necessarily include both of these ingredients and the day is probably not far away when a bladed
assembly vibration analysis will automatically incorporate both a complex structural dynamic modeland a realistic
representation of the conditions which provide both the excitation and the damping effects.

In the last group of papers — six in total, including contributions by Griffin & Hoosac, Irretier, Ewins & Han,
Jones & Muszynska, Lu & Warner, and MacBain & Whaley — all describe studies which have been made of the
problem of mistuning. This very real practical problem of how closely tuned should the set of blades be in any
one assembly is now reveiving considerable attention. It is widely accepted that mistuning is generally undesirable
from the point of view of forced response levels but, conversely, is advantageous in respect of flutter. Most of the
papers included here address the first of these problems and seek an answer to the perennial question: “How
should a given set of blades be arranged so as to minimize the detrimental effects of mistuning?’’ A definite
answer is not yet available but probably will be by the time the next of these volumes in produced.

The preparation of such a volume as this is only possible through the contributions and cooperation of the
authors and the reviewers all of which are gratefully acknowledged. In particular, the extra efforts made in order
to meet the final deadlines were much appreciated. We hope, on their and our own behalf, that the contents of
this volume have something to offer all those whose interests include the study of blade and disc vibration.

D. J. Ewins, London, England
A. V. Srinivasan, East Hartford, Connecticut, USA



8562048

CONTENTS

Frequencies and Mode Shapes of Rotating Bladed Axisymmetric Structures. Application to a Jet Engine

G. Ferraris, R. Henry, M. Lalanne, and P. Trompette . . . . . . .. .. ... it . 1
Free and Forced Vibration of Turbine Blades

J.S.Raoand H. M. Jadvani. . . . . . . ... . ... e e e e e e 1
Vibration Modes of Packeted Bladed Discs

D. J. Ewinsand M. Imregun. . . . . . . ... .. .. e e e e e e 25
Dynamics of the Last Stage Rotor Blades for Large Steam Turbines

S.JaNECKI . . . e e e e 35
Analysis of Friction-Damped Resonant Stresses in Turbine Blades

C-F.Shengand J. G. Mosimann . . . . . . . ... ... ...t e e e e e e 45
Stagger Angle Dependence of Inertial and Elastic Coupling in Bladed Disks

E. F. Crawley and D. R. Mokadam . . . . .. ... . ... ... .. e e e e e s 51
Measurement of Relative Vibratory Motion at the Shroud Interfaces of a Fan

A. V. Srinivasan and D. G. CULES . . . . . .. .o i i e e e e e e e e 61
Modal Analysis and Parameter Identification for Twisted Compressor Blades by Means of Impulse Excitation

Z.F. Fuand H. T.Zhou. . . ... ... ... e e e e e e s s, 73
Experimental Study to Gain Insight in the Vibration Characteristics of a Steam Turbine LP-Wheel with

Lashing Pins

J. Wachter, R. Pfeiffer, and J. Jarosch . . . . . . .. ... ... . . . . s 83
A Study of Unsteady Pressures Near the Tip of a Transonic Fan in Unstalled Supersonic Flutter

D. G. Halliwell,S. G. Newton, and K. S. Lit. . .. .. ... e, 91
Twin Mode Analysis of Aeroengine Fan Vibration and Flutter for Use in Design Studies

R.A.J Fordand A. V. Srinivasan . . .. ... ....... ... . .. 97
Model Development and Statistical Investigation of Turbine Blade Mistuning

JoH. Griffinand T. M. HOOSAC. . . . . ... ... .. .. e s i 105
Spectral Analysis of Mistuned Bladed Disk Assemblies by Component Mode Synthesis

H.odrretier . . . .. o e e, 115
Resonant Vibration Levels of a Mistuned Bladed Disc

D.J. Ewinsand Z. 8. Han . . . . ...... ... . . .. 127
A Discrete Model of a Multiple Blade System With Interblade Slip

D. 1. G.Jonesand A. Muszynska . . . .. ... ... it 137

A Statistical Assessment of the Effect of Variable Root Flexibility on the Vibration Response of Shrouded
Blades

LK. H LuandP.C.Warner. ... ......... ..., 147
Maximum Resonant Response of Mistuned Bladed Disks '
J.C.McBainand P. W. Whaley. . . . ... ... ... ... . e, 1563



o Ty

SUMMARY

This paper deals with the prediction of the dyna-
mic behaviour of bladed axisymmetric systems. The

. Sl
structure consists of axisymmetric components having é’z'
thin and thick parts and a high number of twisted s

blades. The thin parts are modeled with thin shell
axisymmetric elements, the thick parts with thick iso- g
parametric elements and the blades with twisted beam
elements, including predominant effects such as bending
bending and bending-torsion coupling. Junction elements
are used to insure slope and displacement continuity
between the various finite elements having three, four
and six degrees of freedom per node. Kinetic and strain
energies, including the rotating effects are calculated
and governing equations are derived using Lagrange's
equations. The developed method and the associated com-

puter program is applied to the determination of fre- £
quencies and mode shapes of a rotating low pressure w
stage of a recent jet engine.
NOMENCLATURE
A coefficient matrix ( )--
c shear center of a cross section 2;'
E Young's modulus W
F,f force and generalized force vector ()
G centroid of a cross section *
G J torsional rigidity >
K,k stiffness and generalized stiffness

matrices
L finite element length [©)
M, m mass and generalized mass matrices
M; Mo, .., typical points (=
N;,No, ... displacement functions matrices e
N blade number F
NI,NJ finite element nodes G
n nodal diameter number g
R(Gx&En) local coordinate system i,3
R, (OXYZ) global coordinate system M
S blade typical cross section T
T,U kinetic and strain energies [Mlel
VM typical point absolute velocity
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Superscripts

FI% | [*

Subscripts

typical point displacements and slope in
axisymmetric systems

cartesian coordinates

axisymmetric coordinates

volume

finite element nodal displacements
generalized displacements

rate of pretwigg

components of OGy in R coordinate system
shear center coordinates in R
dimensionless frequency

mass per unit volume

initial stress

longitudinal strains

angular velocity and its components in
the R system

dimensionless speed of rotation
pulsation rd/s

denotes transpose of a matrix

time first derivation (velocity)

time second derivation (acceleration)
X first derivative

X second derivative

free vibration

arrow denotes a vector quantity

related to a single blade or n = O nodal
diameter

denotes centrifugal effect

related to a typical finite element
denotes bending effect

related to centroid

denotes non linear geometric effect
related to typical sections Si,Sj
related to a typical point M
denotes torsion effect

modulus of the vector MM,



INTRODUCTION

In turbomachinery, the rotating elements such as
the bladed disc assemblies, are the most critical parts
of the design. Thus, the manufacturers are interested
in any improvements in dynamic analysis methods. We are
concerned here with the prediction of frequencies and
mode shapes of jet engine turbine stages.

Several investigators Armstrong |1|, Ewins ]2‘,
|3[, Cottney l4[ and Kirkhope-Wilson |5|, have studied
the vibration characteristics of thin bladed-disc
assemblies.

In their approach, the disc is a circular plate
and rectangular cross section beam elements represent
the blading. In |6|, Thomas has included the effect of
an asymmetric pretwisted cross-section blade. The pre-
diction of the dynamic behaviour of axisymmetric struc-
tures is now well known ]7], |8 . On the otherhand,
many papers have been written on the vibration of rota-
ting beams and blades along with review articles by
J.Ss. Rao |9, |10], |11]| and Leissa |12], |13].

In ]1—6 ]the bladed disc systems have an axisymme-
tric behaviour characterized by diametral and circular
nodal lines. This hypothesis is confirmed by experiment,
and is valid for structures having a large number of
blades mounted on a disc and for a large range of modes.
As a consequence, the modelisation can be achieved on
a much simpler way because the required number of de-
grees of freedom is small. When the mode shapes are not
axisymmetric, methods using cyclic symmetry can be in-
troduced [14[, |15[, [16] ; thus impellers are excluded
from consideration.

For the typical axisymmetric bladed structures
considered here, experiments have shown that their dyna-
mic behaviour still has axisymmetric characteristics.

As shown in figure 1, these structures cansist of :

- axisymmetric cylindrical components having thin
and thick parts without plane of symmetry.

- high number of blades modeled as beams where
bending-bending and bending-torsion effects are
taken into account.

In this paper, the application presented is a ro-
tating low pressure turbine stage of a recent jet en-
gine. The finite element method, very well suited for
complex structures, is used. Strain and kinetic ener-
gies of the various elements are determined, then the
finite elements are introduced in the calculations and
the Lagrange equations applied. The natural frequencies
and associated mode shapes are obtained by solving an
eigenvalue-eigenvector problem.

An inertial reference axis system is used such
that X is directed radially outwards, Y is directed
tangentially, and Z is directed parallel to the axis
of rotation. The structure is rotating at a constant
angular velocity Q. The material is assumed to be homo-
geneous and linear elastic, and natural vibrations are
assumed to be of small amplitude.

AXISYMMETRIC STRUCTURE MODELISATION

The turbine stage presented in figure 1 shows an
axisymmetric component which has thin and thick parts ;
thus, at least two types of finite element are needed -
thin shell and thick axisymmetric elements. The thin
shell element used here has 2 nodes and 4 degrees of
freedom (DOF) per node and the thick isoparametric
element has 8 nodes and 3 DOF per node. These two ele—
ments are classical and will be briefly presented.
Continuity between 3 DOF per node elements and 4 DOF
per node elements is ensured by massless special thin

Fig.l : Simplified representation of a jet engine turbine
stage (low pressure).

shell elements called "junction elements" whose thick-

ness and Young's modulus values are derived from mecha-

nical considerations detailed and checked in |18|, and

used in |17

Thin axisymmetric element. Figure 2 shows this ele-
ment, the thickness is constant and displacements are
expressed in term of trigonometric series as follows

A
z

w
- ‘l’/' — v
1

° 2

5 s,u
r,u,
Fig.2 : Thin shell axisymmetric element.
u = I u, cos nb
a n
v = L v, sin nf (1)
o n
W = I wp COs nf
n

The displacement functions and the four nodal
degrees of freedom are :

u, = aj + azs
v, = az+ ays (2)

W= as + ags + ays? + ags?d

and awn t
6} = {urn’ Yzn’ “gn’ Yy = - TE;} t31

Strain displacement relations, including non linear
effects due to rotation are found in Novozhilov thin
shell theory |19l.

Thick isoparametric element. Figure 3 shows this
element. The displacements are expressed by
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Fig.3 : Thick isoparametric axisymmetric element.

ur = T u cos n6
u = L u cos nf (4)
4y = I ug sin nd
with 8
a = I N, u ,
rn i=1 s rni
8
Yn © iil Ny Yoy ®
8
uen B i_z—_l Ni ueni
and
g, = _%(1—5) (1-n) (1+£+n)
Ny, = - %.(1+g) (1-n) (1-g+n)
Ny = -7 (145 (1+n) (1-g-n)
N, = - % (1-8) (1+n) (1+&-n)
1 (6)
N5 = 3 (1-£2) (1-n)
Ne = % (1+48) (1-n2)
W = %(1-&2) (14n)
Ng = % (1-g) (1-n2)
the three nodal DOF are :
§ = {u_, }t L

u u
rn zn’ “On

Strain displacement relations including geometric non
linear effects are given in I20].

Junction element. As the thick isoparametric ele-
ment has three degrees of freedom per node and the thin
shell element four DOF per node, the connection between
thick and thin parts of the structure must be treated
with care.

The aim of a junction element is to ensure the con-
tinuity of the slope Y. This is achieved by plating
(fig.4) two thin shell elements I, II between thick ele-
ment nodes 1, 2, 3 and the first thin shell element III.

Ay

ur,u
isoparametric | junction  thin shell
elements : elements elements

MY

23N
. PN
thick O “~~___
part 45 © - —c——
, ¥ YN
:E(’ —_
§; 7 thin part
b

Q

ol |

v

Fig.4 : Junction elements.

Thus, displacement continuity is achieved. The adequate
hardening of the slope stiffness terms of the junction
elements is guaranted by the rigid rotation displace-
ments of the facets (1-2 and 2-3). Practically, finite
elements I and II are defined with the thickness of
element III in which displacement stiffness terms are
divided by 100 and slope stiffness terms multiplied by
the same number. To avoid perturbation in dynamic beha-
viour, mass per unit volume p is taken as zero. This
element has been detailed and checked in ]17| and |18[.

BLADING MODELISATION

If it is assumed that the number, N, of blades is
large, and that the system vibrates at a small number,
n, of nodal diameters, the blades can be considered to
be continuously distributed on the rim around the axi-
symmetric structure. Thus, following Ill, the blade
array strain and kinetic energies U, T, may be obtained
from the strain and kinetic energies of a single blade
Uo’ To' These are

u = JuU ;T o= §r, (8)

For the symmetric case, i.e. when the number of
nodal diameters n = O, the coefficient 1/2 has to be
canceled. Thus, noting that UO and T are independent of
n, the stiffness and mass matrices of the vibrating
array of blades are those of a single blade weighted by
the factor N or N/2 according to the value of n.

This part of the paper is devoted to the derivation
of a beam finite element suitable for jet engine turbine
blade modelisation.

In general, a turbine blade is pretwisted : it has
an asymmetrical varying aerofoil cross section and is
mounted with a stagger angle. Depending on the geometri-
cal characteristics, the turbine blading can execute
either uncoupled bending or torsional vibrations or
coupled bending-torsion vibrations. Coupled bending-
torsion vibrations occur when the shear center does not



coincide with the centroid of the blade cross section.
When the blade is pretwisted, vibrations in rotation
are further coupled between the two bending modes. In
addition, coupling exists between longitudinal and tor-
sional motions (untwist due to centrifugal effects) and
between longitudinal constraints and bending (centrifu-
gal stiffening). The finite element presented takes
into account these fundamental effects. Strain energy

U is calculated as the sum of energy (Up) due to exten-
sion of a fiber and shear energy (UT) due to torsion.
Derivation of Up is straight forward but that of U has
to be more detailed. Up is expressed in term of the
longitudinal strain e defined as the ratio between the
fiber length difference after and before extension, and
its undeformed length. e is then found to contain line-
ar and non linear terms needed to describe the effects
mentioned previously. Kinetic energy is derived from
the calculation of the velocity of a typical point ex-
pressed in a coordinate system linked to the rotating
structure. As turbine blades are almost radial, Coriolis
effects can be neglected I18].

Longitudinal strain determination

On a typical cross section of a blade segment
(fig.5) a coordinate system R is located at the centroid
G of the section. G, and are the principal inertia
axis and Gx is the centroid line. C(gt,nt) is the shear
center and M(§,n) is a typical point of the cross sec—
tion.

Y4R,(0XY2Z) n
M3
n, =8,+d0
5 6,-8 Vs 3, =0, +d¢
n, 8 X
R(GXSI[’ l C2 -
¥
n % [
= i~
t —?C *MaN
3 \_.G6 &
X//.
(o] Q z
Fig.5 Main definitions on a twisted blade segment.

Considering section 1 located at x and section 2
at x + dx, one defines respectively for these 2 cross

sections the centroids Gl and G2, the shear centers

Cy(&,..,n_,) and Co (£ _,,n..), local coordinate systems
tl té Jt27 t2 .

G1€1n) and Gygyny linked to minimum and maximum second

moments of area, the pretwist angles 61 and 6 with the
rate of pretwist ' = dp/dx and two homologous typical
points M;(g;,n;) and My (E5,m5) . ’

Before any deformation, [M1M2[ is the length of a
typical fiber. Following Euler-Bernoulli assumptions,
the sections remain plane when deformation occurs. Thus
M; goes to M'; after torsional displacement ¢; and to
M") after longitudinal and bending displacements (u,v,w)
M, goes to M', after torsional displacement o = ¢; + d¢
and to M", after longitudinal and bending displacements.

Extension of M;M, results in M";M",, and the longi-
tudinal strain is defined as :
e o N b o
[ 5| - (b |
e = (9)
—_
(M85 |

where,

—_— —_ —  —s
MMy, = MG) + GGy + GyM; (10)

and,

M" M", = M" M'; + M',C; + CiM, + MM, + M,C
1M MY 1€1 M 1M2 2C2

+ CoM', + MM, (11)

The previous vectors (10), (11) expressed in
R(Gx&n) coordinate system and inserted in (9) yield to
the expression of the longitudinal strain where €9 and
€y represent linear and non linear terms respectively.

€ = e, + € (12)

2 n
Remembering the small displacement hypothesis and
assuming that the chord and the rate of pretwist have a
smooth variation along the blade, terms of the form
dx¥1+a2 are equivalent to dx(1+a2/2) and (£24n2)0'2 can
be neglected in the denominator of Eq.9.

Using notations [u,v,w,¢,9|' = d/dx |u,v,w,¢,6| and

Iu,v,wl" = dz/dxzfu,v,w] and &' _, n't being the variation
of the shear center position between cross sections 1
and 2, it comes
- g, = u' - Ev" - nw" + ke'¢' (13)
u'? "2 wh2
S A PR I A 2 ¥ 12 ' - "
Eog > g = PR | (n n)v
Vlz wl2
- (E-gw"|x + (14n28'2) T + (1+£26'2) ==
- Ene'zv.w- - E8'u'w' + ne'u'v' - na'w" - Eu'v"
+ Env'w" + EZQIVIIWI - nzelvlwn + End'w'w" - End'v'w"
where 2,52
A“+B
k = na-g8 , h 5— + 8' (£D-nC) (15)
and
= -— ' — ' -
A = x[(g-gpe' - n' | + (n-n)
&= - ] ' s s
B x[n-nper 4 gr | - (e-g,) (16)
c = 2 m-n 6" + &' | - x(g-£)
7 |t=ny el T X(E-E
%2
s i o = ] 1 - =
D 7 =-gp8" + v ] - x(-np)

Finite element

The finite element proposed is a straight beam
element with 2 nodes NI and NJ situated at the cross
section centroid ; NI in G; and NJ in Gy respectively,
(fig.6) . The element is calculated in a local coordinate
system R, (G,x&n) - x axis is colinear to NI - NJ and
G.&, G,n, aYe the principal inertia axis of the cross
section S.. At each node the displacement vector has 6
components : the longitudinal and bending displacements
u,v,w, the torsional displacement ¢ and the bending
slopes ¢g and ¢n, defined in (17)

= -w' = v' 17
¢€ ’ ¢n (17)
On matrix form, the element displacement vector is then
t
8 = W, P, ; ; :
e ’“i"’l'wl"”l'%l"”ni'u;"’j'W3'¢j””gj'¢nj’ (18)
Assuming linear polynomial expansions for u, ¢ and
cubic for v, w
u = aj + axx
= 2 3
vV = agz + ayx + acgx® + agx
3 4 5 6 (19)
w = ay + agx + agx2 + a10x3

= Dby + box



the coefficient matrix A of equation (20) is obtained
from (19)

lay, as, az, ---, ajg, by, b2|t = |a] 18} (20)
and given in appendix. The strain and kinetic emergies
for an element can then be derived.

A
vy [Re(0XYZ)

R; (GxEn)

Fig.6 : Twisted beam finite element for the blade.

Element strain energy

The strain energy of an element is the sum of ener-—
gies dye to the longitudinal strain effects Up and that
of torsion Up.

One has
U = U_+U (21)
where 1 5
X v
5 G JT ¢ (22)

G, shear modulus and J,, torsional constant calculated
in |17| from the profiTe known by point, the other ener-
gy component is

1 t.

U = %= € E e dv (23)

v

Where € is the longitudinal strain given by (12-16), E
is Young's modulus and V volume of the element.

Taking {81} as generalized displacement vector

{8} = J i (24)

lullvl ,W',V",W",¢
and using (19) and (20) yield
{63 = |m| [a] (s} (25)

Element strain energy is derived by substituting
equations (12-16) and (19) expressed in term of (25) in
(21-23) and integrating over the volume as explained
below.

Finally

K+ Kg] {de} (26)

with L
t

N e Y R I I (@7)

(¢]
Where matrix ]k +k | is given in the appendix. K_ is the
elastic stiffness %atrix and the geometric stiffness
matrix due to non linear rotating effects.

Element kinetic energy

By definition
1 2
= = \Y av (28)
Te 2 M P

where, p is the material mass per unit volume, Vy the
velocity of a typical point M expressed by its components
in the local rotating system R, (£ig.6). The blade rota-
tes at constant angular velocity Q. Its components in R
are FQI,QZ,Qg) and that of 0G (xG,EG,nG). Calculating
VM glives

&-n&v_£;v+u2|nG+n+w+(5—5t)¢|—ng|£G+a+v-<n—nt)¢|

$

<

- &—(n—nt)é-ﬂlInG+n+w+(g—gt)¢l+Q3|xG+x+u—nw'-gv'[(29)
Q+(g—gt)$+ﬂl]£G+E+v—(n—nt)¢|—Qz|xG+x+u—nw'-£v'|

Taking {§,} as generalized displacement vector

{6, = Iu,V.w,V',W',¢F (30)

and using (19) and (2Q) yield

162} = N [a] (8, (31)

or

5o} = || Ja] 3y (2

The kinetic energy for an element is derived by
substituting equation (29) and (19) which are expressed
in terms of (31), (32) in (28), and integrating over
the volume.

Then it comes
_ 1 H € [ 2 1 t €
T, = 5 {8} [Me,{ée}+ 7 {8} !Kc|{de}+{Fc} {8 }+r_+1  (33)

with the mass matri?

ol = a1 €0 | |n2]®m_||Ny|ax} |al (34)
[¢]
the centrifugal stiffness due to mass in rotation
kol = 12" o | Iwa]®lx_|ma| ax) ] (35)
(o]
and nodal force vector equivalent to centrifugal forces
t * t
F} = 1o {£.}"|np| ax} |a| (36)

(0]
Where |me|, lkc|, |fC] are given in appendix. T, kinetic
energy due to Coriolis effects is neglected and TR does
not give any contribution when Lagrange's equations are
applied.

Integration procedure

Integration over the volume of an element is per-
formed in two steps. In the first step, integration is
done over the element section S, in the second step in-
tegration is achieved along the length of the element
from node NI to node NJ.

thus the surface integrals of the form £(&,n)d&dn
are numerically performed using integrai’s equations
technique. For the node sections (NI,NJ) located at x,
and x,, the first step gives their geometric characteZ>
ristics i.e. Area, second moments of inertia, shear cen-
ter coordinates, torsion constant JT, ete .., |24|.

The blade profiles are usually defITed by points,

As noted earlier, chord and pretwist have smooth
variation along the blade, the second integration step



is performed assuming linear variations of the section
geometric characteristics with x within the element.

GOVERNING EQUATIONS - FREQUENCIES AND MODE SHAPES

The structure is modeled with the various elements
previously presented. The continuity between blades and
the axisymmetric structure is ensured for slopes and
displacements |17|.

After assembly one gets, for n =0

- ) ) ) 4
M 8o + IKQ+KGO(00) Kcolao F(Q2) (37)
and for n # O
M6+ lKn+KGn(00)—Kcn|6n = 0 (38)

with M ,M ,Ko,Kn, classical mass and stiffness matrices,
KGo’ i , geometric stiffness matrices,
KeorKen , centrifugal stiffness,
F(Q2) and 0p respectively the centrifugal force
vector and the initial stress distri-
bution.

The solution of system (37) can be written as

(39)

8o = 81 + Sp2

§p1, static displacement vector is obtained in solving

2
+, - =
|x, Ko (00) xcolsol F(Q2) (40)
the stress distribution oy and displacements §j; are
unknown initially and are obtained by using a Newton-

Raphson procedure.

892, the dynamic displacement vector is solution

of

oo & _ _
MO 502 + IKO KGO(OO) KCO|602 (0] (41)

and has the form " St
So2 = 8gp e’ (42)

this gives a classical eigenvalue-eigenvector problem

2 * _ L *
w? M_ 8oz |k +K o (00)-K_ [ 802 (43)
For n # 0, 0p is still valuable for K, calculation
Gn
and eq.(38) leads to
*
w2 M 8% = |k +K_ (og)-K_ |6 (44)
n n n Gn cn' n

which has to be solved for n =1,2,3,...

The eigenvalue-eigenvector problems (43) and (44)
are solved using a simultaneous iterative method.

APPLICATION TO A LOW PRESSURE TURBINE STAGE

The method presented in this paper has been pro-
gramed in FORTRAN IV on a VAX 11/780 computer and
checked on various test structures. Preliminary tests
were performed, and frequencies compared to analytical,
numerical and/or experimental results i.e. : a twisted
beam |2ll, a steam turbine blade |22|, a fan blade and
a low pressure turbine blade of a jet engine |17|, axi-
symmetric plates l23| and a bladed disc assembly |5[.
The method is now applied to a rotating low pressure
turbine stage of a recent jet engine.

Fig.7 shows the finite element mesh used to calcu-
late frequencies and mode shapes of the above mentioned
turbine stage. The disc is mainly modeled with thin
shell axisymmetric elements connected to the disc rim
using junction elements (I to VI). The rim is modeled
with thick isoparametric elements. The blade is mode-
led with twisted beam elements and continuity of dis-
placements and slopes at the blade root is ensured

[N\
twisted
beam elements blade
vl /VIl
thick X
isoparametric I VI disc rim
elements
I miyjivyv
junction
elements diec

thin shell elements

|
AN

z

Fig.7 : Low pressure turbine stage. Finite element
modelisation.

using two junction elements (VII,VIII) plated on the

disc rim. The disc is clamped as shown in fig.7. The

blade tip is free in the X and Z directions, supported

in Y and retained in torsion.

The frequencies and mode shapes are computed for
the structure vibrating with O to 5 nodal diameters at
various speeds of rotation . One notes, f = £/fg; the
dimensionless frequency, fp; the fundamental frequency
at O nodal diameter and { = Q/fg; the dimensionless
speed of rotation. The frequencies related to n and Q
are presented in fig.8 and 9. The associated mode shapes
are arranged in families f.y, fj11, ..., fhyr and pre-
sented in fig.10 to 14.

Family fj7, fig.10, is mainly a disc-rim vibration
mode. The blade moves in the XZ plane following the rim
motion. It has been verified that the frequency nt
approaches the first bending frequency of the clamped
blade for increasing values of nodal diameters. Other-
wise, the rotation effects results in a 30 to 40 %
increase of the frequencies, (fig.8 and 9).

Family ntI' fig.11, shows a disc bending mode.
Rim vibration is limited and the blade bends in the XZ
plane. It can be seen in fig.9 that the rotation effect

is noticeable on the various n diameters modes (foII'
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Fig.9 : Turbine stage frequencies versus speed of
rotation.
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Mode shapes of family ntII'
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Mode shapes of family fnv'

Fig.14

Mode shapes of family anI'

fi111s ---+ f517) i the associated frequencies increase
more than 20 % in the range of Q studied.

Family f 177, fig.12 is mainly a blade vibration
mode. Its frequencies tend to the first chordwise ben-
ding frequency of the clamped blade when the number of
nodal diameters increases. The axisymmetric part of the
stage undergoes small amplitude of vibration, except
for n = 2 and n = 3 which respectively shows large mo-
tion for the disc-rim and for the disc. Rotation effect
results in a frequency increase of about 8 %.

Family f,rv mode shapes show mostly torsion vibra-
tion of the blade with a standing disc. When n increases,

the frequency tends to that of the first torsion mode
of the clamped blade. It can be seen in fig.9 that the
rotation speed @ has negligible effect, namely 1.5 %
for all values of n.

Family £y, presented in fig.13, shows a disc-rim
vibration with strong coupled second bending-torsion
motion of the blade and, when n increases, a frequency
tending to the second torsion mode of the clamped blade.
Except for n = 2, for which frequency increases bout
3.5 %, the rotating effects are negligible.

Family fpyr, fig.14, is a highly coupled vibration
mode with important motion of the disc and rim, especial-
ly for n = 1 and 4. The blade vibrates on a coupled
bending-torsion mode and the frequency tends to the
second bending mode of the clamped blade. For this last
family, the rotating effects result in a rather small
increase of the frequencies (2.5 % for n = 1 to 5 and
5% for n = 0).

At last, examination of fig.8 and 9 shows clearly
that the disc influence is low for the families fpp,
fnr11rr fnrv and fhyr, and on the contrary is significant
for the families fj17 and fv- It can also be noted that
the families fp1, f,77 and, in some degree f,1711, are
affected by the centrifugal effects.

CONCLUSION

The method presented in this paper is well suited
for predicting the vibration analysis of any rotating
bladed axisymmetric structures with axisymmetric beha-
viour. The results obtained for the low pressure turbine
stage show that an adequate model of such structures
must consider all the coupling effects due to the blade
and disc geometry along with those due to the rotating
effects.
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APPENDIX Aj] = A3y = Ayg = Ay = - Ags = Ajy,y =1
FINITE ELEMENT CHARACTERISTIC GENERALIZED MATRICES A7 = - Ay = - A5 12 = - 0.5 Asg = 0.5 Ags = Ag_1]
The reference coordinate system is which integra- =-R1p.4 =RA12,10 = 1/L (a.1.)
tion is performed is located at e centroid,of the
section, thus integrals such as g ds or jT n ds Age = Ag,12 = - A1],5 = - A1y 1] = 1/L2
cancel and are not reported. S ‘S
Asg = - Asp = - Agy = Agg = 3/12
Matrix A, equation (20). Noting Ajj = A(I,J) and L
length of the element yields. Agy = - Agg = Alp,3 = - Al1,9 = 213
Generalized stiffness matrix, equation (27).
E+0dg o} o o] o} Ek6'
0o (1+n28'2) | -gpEne'2 -0gENnd' |-ogn26" o
00 (1+£20'2) | 54E20' | opEnd’ )
]ke+kg] = ds " (a.2.)
s £4 (E+ag) En(E+og) —EkEe'—dontx
- v
Symmet. n“ (E+ag) Eknb'400&, x
*
EX28' 2+0gh+ | d/ds (GIy) |

k and h are given in Eq.(15) and 0p initial stress is
calculated in solving Eq.(40).

(%) Means that ’ f is still integrated so as

d : . s
ag—[GJTI ds gives GJT after integration.



Generalized mass matrix, equation (34).

1tj1o|lo]|o]|oO o}
1lo|lo|o
e
1,040 -&
g2 | &n o
n? )
Sym 5
- - 2
+n<+ +
£°+n Et ne

(a.3.)

Generalized centrifugal stiffness matrix, equation (35).

Remembering that Q,, 2, 923 are the components of
the angular velocity vector {2 expressed in the rotating
local coordinate system of the element, fig.6

22+032 (-1, |-01923] 0 | © 01 (£,23-n, %)
n, (R12+032)
G F oot 3
+E, r03
-£,(0,2+052)
E o] o t
-n thQ 3
D | C |,(E2Q3-EnQ))
Sym.
- B |9} (Enf3-n2Qy)
A
(a.4.)

= (B2+E.%) (@124252) + (nZ4n, 2) (2)2+232) +22Q3 (En+E 0 )
= n?(Q22%+032)

= En(922+932)

£2(2224032)

= 092+0,2

= -Q,03

= 012+042

10

Generalized centrifugal force vector, equation (36).

Remembgging that x_, &1, ny are the components of
the vector OG; (node NI} expressed in the local system
Ri(GXEn), fig.6.

(922+Q32)(x+xI)—QIQ3nI—QZQ3nI

(0324012 €090 (x+x) -RQ3n

(912+922)n1—9293£1—9391(x+xI)

{£} = as. [F1828%+2123En
. -

s Q193124010 &n

(2)2+232) €0 - (21240,%) n £, +(222-032) &n
+(9193Et—9192ﬂt) (X+XI)

+9293(n2-52+515t—nInt)

(A:5:)
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ABSTRACT x4
The kinetic and strain energy expressions Ixx,Iyy
for a tapered twisted aerofoil cross-section T T
blade mounted at a stagger angle on a rotating c$r ey

disk are obtained using beam theory neglecting
higher order effects such as shear deformation,

rotary inertia, coriolis forces. Equations of I.,Iz
Lagrange are used to derive equations of moti- T T....
on and set up the eigenvalue problem to ob- xi TS
tain the coupled bending-bending-torsion mode [KJ
frequencies. Assuming proportional viscous

damping the expression for energy dissipated L

in the rotating blade is derived. The virtual [Vﬂ ™M
work due to nozzle passing excitation is also J
set up and the equations of motion for forced m
vibrations of a blade are derived. These
equations are solved by modal analysis. A
general computer program is developed to de- Mg
termine the response of the blade and the re- {Q}
sults obtained are discussed.

q’

NOMENCLATURE R
A Area of cross~section R
A; Polynomial coefficients of function T, My

A= T
ol Coefficients in trigonometric

series of forcing functions t
C Torsional stiffness v
[C] Damping matrix w
Cy Proportional damping coefficient Wy Uy, Uy
E Modulus of elasticity v
e Unit vector -
fF Shape functions W
E*'F! Forcing functions d
G Modulus of rigidity wf
Ixx'%ﬂ Second moment of area about cen-

troidal axes

Product moment of area about cen-
troidal axes

Principal second moments of area

Moments of inertia per unit length
about centre of flexure and centre
of gravity respectively

see equation (22)

Polynomial coefficients of functions
L Ix,Ly--
Stiffness matrix

Blade length

Mass matrix, moment

Harmonic number

Number of terms in assumed solution
Number of nozzles

Forcing wvoctor

Time function

Disc radius

Position vector

Coordinates of centre of flexure
from centroid

Kinetic energy
time
Displacement vector

Displacement in axial direction
dvue to centrifugal force

Displacement components
Potential energy
Velocity

Energy dissipated due to propor-
tional viscous damping

Work done by external forces



Bending displacements in xand y
directions

Bending displacements in =x, and Y,
directions

.'L“LJ,

coordinate axes through centre of
flexure

xx, 9y

coordinate axes through centroid.
Distance measured along length of
the blade

X0, 909,

z

z/L
Mass density

& ™ N

angular velocity of Disc
Natural frequency in kth mode
Torsional deflection

X

Stagger angle

Nozzle passing frequency Mg
Virtual parameter
Generalised coordinate

Tangential-axial coordinate system

w

Modal damping

I~ 3 O™ 0 g

Denotes either a vector or sub-
matrix, thus, R, R

. Denotes differentiation with respect
to z , thus, y/

Denotes differentiation with res-
pect to t , thus, §

Denotes coordinate quantity, thus x
INTRODUCTION

Blades constitute the heart of the turbo-
machine and as such they have been subjected
to a very intensive theoretical and experi-
mental study during the last two decades main-
ly due to the advent of high speed machines.
It is known from investigations that the fail-
ure of turbine blading is normally due to
fatigue and it occurs when vibrations take
place at or near resonant conditions. In
earlier designs fatigue failures were avoided
by tuning the blade to operate away from the
natural frequencies. However, a typical
modern machine may have 3 or 4 rotors, each
rotor having several stages and the turbine
altogether may have thousands of blades of
different characteristics. Here in such
machines, it is not always possible to avoid
resonance conditions in some stages. Under
these conditions the designer should estimate
the blade response and dynamic stresses at re-
sonance conditions. With the help of this
information, a blade can be designed for the
required life to withstand the dynamic stre-
Ssese.

Generally the blades in the low pressure
stages of a turbine are quite long and fle-
xible, due to specific volume of the fluid
being too large in these stages. The blades
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are tapered and twisted and have airfoil
cross-section to provide high 1ift to drag
ratio. Free and forced vibration of such
blades are considered in this paper. Exten-
sive literature is available in this area; as
many as 450 papers were reviewed (1:3) in a
series of articles in the last decade. Three
other reviews on allied topics appeared in the
last three years (5-7). Some of the recent
works on blade vibration include the following:
Pre-twisted rotating blades, Jadvani and Rao
(8); Irretier and Schmidt (2) on mistuned
blades, Ewins (10) on bladed disks with pack-
eting; Muszynska and Jones (ll) on response of
mistuned bladed disk system. Sogliero and
Srinivasan (12) used statistical procedure to
estimate fatIgue life of mistuned rotor blades
due to stationary Gaussian white noise pro-
cess excitation. Partington (13) described a
vibration design method for pinned root con-
trol stage blades. The instabilities due to
harmonic variation with time of the precess-
jional rate due to whirling and other causes
were discussed by Sisto et al (14).

CHARACTERIZATION OF BLADE RESPONSE

The response of the blade can be descri-
bed in terms of bending displacements x(z2,t),
Yyz,t) of the point O, which is center of
flexure of the cross-section of the blade shown
in figure 1 and torsional displacement 8(z,t)
with respect to the same point. A particle
initially at Point P with coordinates x,v in
Oxy axis system, moves to point P, under the
influence of angle of rotation é,resulting in
an inward displacement Ye, and outward dis-
placement xe in x and y directions respectivelye.
This point P further moves from P, to ® by
x(z,%) and then verticallyto position p'by
y(z,t) under the influence of bending dis-
placements. Hence the > and Yy displacements w,
and Lﬁ,of the particle P can be written as

My

\Ly:

= x-?e (1)

J+ %6
In figure 1 an axes system Xx,Y, through

the centroid G is also used to describe the
bending displacements, which identifies the
stagger angle ¢ with respect to the ¥ axis in
the plane of rotation of the disk as shown in
figure 2., In figure 2 the blade is occupying
a positionl, for the instance shown in fixed
axis system CMN. xY and x,¥ axes in figure 1

are displaced by *%i,in x direction and nyiny

direction respectively. The displacements in
equation (1) can therefore be written as :

st - (I'l' h—ye) - ?,6 = il—gle
Uy s (P4 0) %0 = Y rxe (2
In the above equation x, and Y, denote the

bending displacements of the centroid of the
cross-section and x and Y denote the bending
displacement of center of flexure O.

The point P described before, moving from
PtopP , P to P and P,to P!, further moves

longitudinally in 2, direction by w(=b under the
action of centrifugal forces. It has a further



