£ el
LT o
B | L |
b - »--—JJ
o W
5 -— ;
e |
= [ 1’_J
b v -
- S ) * 1

4
International Lecture Series in Computer Science

The International Chair in Computer Science was
created by IBM Belgium in cooperation with the
National Foundation for Scientific Research

Algorithmics
for ULSI

Edited by
C. Trullemans

Academic
Press




O
<0
(o
-
)
L
ot
n

'os)

Algorithmics for VLSI

Edited by

C. Trullemans
Laboratoire de Microelectronique
Université Catholique de Louvain
Louvain-La-Neuve
Belgium

ACADEMIC PRESS

Harcourt Brace Jovanovich, Publishers

London  Orlando  San Diego New York  Austin
Boston  Toronto  Sydney  Tokyo

Il

E8860855

Il



ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road
London NW17DX

U.S. Edition published by
ACADEMIC PRESS INC.
Orlando, Florida 32887

Copyright © 1986 by
ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved

No part of this book may be reproduced in any form by photostat, microfilm, or any other
means, without written permission from the publishers

British Library Cataloguing in Publication Data

Algorithmics for VLSI

ISBN 0-12-701230-3

Photoset by Paston Press, Norwich and printed by
St Edmundsbury Press Ltd., Bury St Edmunds, Suffolk



Algorithmics for VLSI



International Lecture Series in Computer Science

These volumes are based on the lectures given during a series of specially funded
chairs. The International Chair in Computer Science was created by IBM Belgium in
co-operation with the Belgium National Foundation for Scientific Research. The
holders of each chair cover a subject area considered to be of particular relevance to
current developments in computer science.

The Correctness Problem in Computer Science (1981)
R.S. BOYER and J. STROTHER MOORE

Computer-aided Modelling and Simulation (1982)
J.A. SPRIET and G.C. VANSTEENKISTE

Probability Theory and Computer Science (1983)
G. LOUCHARD and G. LATOUCHE

New Computer Architectures ( 1984)
J. TIBERGHIEN

Algorithmics for VLST (1986)
C. TRULLEMANS



Contributors

F. Anceau BULL Systémes, Les Clayes St Bois, F-78340 France

R. M. Lea Brunel University, Uxbridge, Middlesex UB8 3PH, England

Th. Lengauer FB 10, Universitat des Saarlandes, D-6600 Saarbriicken,
Federal Republic of Germany

K. Mehlhorn FB 10, Universitit des Saarlandes, D-6600 Saarbriicken,
Federal Republic of Germany



Preface

The first integrated circuit was developed in July 1958 by J. Kilby. This was
an equally important step in the history of both computer science and
electronics. It was also the starting point of an evolution towards a field of
common interest for computer scientists and electronic engineers:
algorithmics for very large scale integrated circuits.

Bridging the gap between algorithmics and circuits is possible thanks to
the level of maturity reached today by integrated circuit technology. The
introduction of FORTRAN compilers, operating systems, and transistor
logic circuits used in computers began in 1958.

As compared to vacuum tubes devices, transistor circuits exhibit a drastic
reduction in size and power requirement, and a corresponding increase in
reliability. The major problem in attempting a further size reduction is to
develop a better interconnection technology. This is basically the aim of
integrated circuit technology. This problem was of prime importance in the
late 1950s and early integrated MOS logic networks were patented in 1957.

Similarly, the need for a telephone exchange system without any moving
mechanical part was the driving force behind the quest for the bipolar
transistor, discovered by Schockley, Brattain and Bardeen, who were
awarded the Nobel prize in 1949. The discovery of the bipolar transistor is an
example of successful interaction between formerly separated fields.
Schockley, Brattain and Bardeen had been taught solid state physics by
Schrodinger, Franck, Sommerfeld and Schottcky, who were among the
founders of this new science; through them, a direct link was established
between the fundamental research of the physicists in the 1930s and the
integrated circuit by Kilby at the end of the 1950s.

The well-known TTL series is another step in the same direction. It is a set
of electronic components. However, the behaviour of TTL components is
mostly described using Boolean equations: they are a materialization of
abstract mathematical entities, ideal logic operators. This way of looking at
them is far removed from solid state physics. However, a TTL circuit is built
in such a way as to allow this abstract description of its behaviour, without
any care for the electrical details. A TTL circuit is, nevertheless, fairly
simple. Progress in fabrication technology has allowed for much more
powerful primitives to be realized. A chip currently contains several tens of
thousands of transistors.

To organize such a complex system, or to write software on such a large
scale, are similar problems. Coming from simple circuit to complex systems,
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clectronic engineers had to join computer scientists in translating onto chips
the architecture of minicomputers.

The celebrated — and debated — book, Introduction to VLSI Systems by
C. Mead and L. Conway, is a sign of a corresponding interest from the
computer scientist community. This book is merely an indicator of the
emergence of this common interest in VLSL.

The catalog of TTL components was the marker of a previous meeting
point. A large set of machines have been built from this restricted set of
primitives. The possibilities opened by the VLSI are, however, much more
fascinating.

An algorithm handles a set of data in order to produce a solution.
Choosing the better method is merely a trade-off between the cost and the
performance of the solution. The context of VLSl is, however, very different
from the context of classical machines, and this remark opens the way for a
whole class of new algorithms.

The new possibilities offered to the computer by the VLSI will obviously
change the way computers are constructed, and they will also change what
computers are doing. There is obviously a large qualitative difference — not
only a quantitative one — between the computation of mathematical tables,
which was the task of the first computers, and the job of an office automation
system.

Integrated circuit technology is naturally oriented towards large volume
producton. It may be compared to printing works. An observer of the 15th
century, even if able to forecast the unbelievable quantity of printed paper
which is distributed today, would probably not have foreseen the conse-
quence of this flow of texts on a now well-read mankind. Our own ability to
forecast is no better. We can only guess that an increasing quantity of
algorithmic machines will spread everywhere. At least one may conjecture
that the undue standardization issued by the industrial revolution can be
cured thanks to information technology.

At the present time, however, standardization is even an internal law of
VLSI technology itself: general purpose microprocessors and memories
share the larger part of the market. However, custom chips are gaining in
importance; they could reach 90% of the market at the end of the 1980s. This
is a fundamental trend, explained by the maturation of design techniques,
and by the evolution of the processing equipment. A process line is more and
more crowded by robots, able to modity their behaviour when facing new
problems. A classical bonding machine, driven by cams, can only handle
standard chips. Any modification to the bonding-pattern asks for costly
mechanical adjustments. An intelligent robot, driven by a pattern recogni-
tion system, can handle custom chips at no extra cost.

Moreover, chips themselves are just part of the story: the largest producer
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of integrated circuits in the world is IBM; however, IBM does not sell
integrated circuits, but computers. A VLSI is merely acomponent of a larger
system; the full power of VLSI is to make feasible complex systems at low
cost. Even if internally complex, these systems may externally look quite
simple. In this way, many problems have a VLSI solution, making full use of
the intrinsic capabilities of VLSI technology.

Part 1 of this book (Prof. Lea) introduces the basic concepts of VLSI
architectures. Original implementations of special purpose architectures are
then described, including a performance comparison between several design
styles (e.g. single instructions single data — SISD, and single instruction
multiple data — SIMD). In part 2 (Profs. Lengauer and Mehlhorn), a
theoretical model for complexity for VLSI is developed and applied to the
design of efficient VLSI algorithms. The HILL design system, including a
symbolic layout editor and a switch level simulator are also described. Part 3
(Prof. Anceau) is devoted to a detailed analysis of layout design styles. This
analysis leads to the description of processor templates, well suited for
silicon compilation (part 4). Part 5 summarizes the evolution of processor
architecture up to the VLSI era.

The design of complex VLSI systems is adequately performed by borrow-
ing techniques commonly used in computer science, and conversely the
versatility of the VLSI is such that it allows for an efficient implementation
of complex functions. The algorithmics for VLSI is a promising domain of
research, and is likely to be added as a new chapter to the core of computer
science. The contribution of the authors of this book is therefore especially
welcomed in this series which is devoted to subject areas of particular
relevance to computer science.

This book covers the material of a series of lectures given at Louvain-la-
Neuve during the academic year 1982-83. The contributors to this book
were the holders of the international professorship in computer sciences,
organized by the “Fonds de la Recherche Scientifique”, which is promoting
high-level research and eduction in Belgium. IBM Belgium is generously
funding this professorship. I am pleased to express my gratitude to these
organizations, to which the attendees to the lectures and the readers of this
book are indebted also. I feel also sincerely thankful to the people who
helped in the organization of this series of lectures, and especially to Mrs M.
Mercenier and Mr M. Windael.

CH. TRULLEMANS
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1. VLSI parallel-processing chip
architecture

R.M. LEA

1 INTRODUCTION TO CHIP ARCHITECTURE

In less than 25 years the concept of the integrated circuit has matured from
1 transistor on a single silicon chip to approach 1000000 transistors per
chip; progressing through SSI (up to 100), via MSI (100 to 1000) and LSI
(1000 to 100000) to VLSI (greater than 100 000). A major contribution to
this explosive growth has been a remarkable “collaboration” between the
microelectronics component industry and the computer manufacturing
industry.

The progress of circuit integration can be likened to that of a goods train
with alocomotive at each end, representing “technology push” and “systems
pull”; the former demonstrating the eagerness of the semiconductor industry
to improve its art and the latter demonstrating the reality of market forces.
Clearly, rapid progress can be made only when both “locomotives” work in
harmony.

Despite occasional periods of slow progress, this dual propulsion system
has rushed the “train” along the “rails” connecting SSI, MSI and LSI into the
unexplored region of VLSI. At this point (circa 1980), it became clear that
VLSI was not just “a little further down the track™ and that the coordination
of “technology push” (which had made VLSI possible) and “systems pull”
(towards smaller, faster and cheaper computers) had become a major
challenge.

The availability of SSI packages incorporating a few logic gates (e.g. quad
2-input NAND gates) enabled digital systems engineers to implement
logical functions on a single printed ciruit board, without understanding the
underlying semiconductor technology. Thus the traditional “bottom-up”
design style of digital electronics engineering gave ground to a “top-down”
style, enabling logicians and programmers to build modular systems, with
standard boards, for an expanding computer market.

1



2 R.M.LEA

MSI packages, integrating the functions (e.g. 4-bit ALU) of such boards
on a single chip, allowed the simpler construction of more complex com-
puters, with even less emphasis on “bottom-up” design. This evolutionary
process continued with the availability of LSI packages, integrating major
components (e.g. 8-bit microprocessors and 160K RAMs) on single chips,
enabling exclusively “top-down” computer designs, based on the selection
of a few highly marketed “plug-in” boards, in an increasingly software
engineering environment.

Thus the era of VLSI dawned with the semiconductor industry planning
even more sophisticated chips (e.g. 16/32-bit microprocessors and 64/256K
RAMs) to provide a source for the computer industry which was cagerly
awaiting the next generation of component technology. However, this
increase in on-chip complexity brought with it a whole new set of problems.
Indeed, the new opportunities offered by VLSI were approached very
cautiously by the microelectronics industry. A new “learning curve™ had to
be climbed, and, because of the speculative nature of VLSI chip develop-
ment, venture capital was difficult to obtain. Consequently, although the
problems and opportunities of VLSI were widely discussed, “VLSI chip
projects” remained mainly in the LSI camp! Nevertheless, the prospect of
more specific VLSI systems remained sufficiently attractive to stimulate
research towards cost-effective solutions for the problems.

Clearly, a watershed had been reached in the evolution of integrated
circuits, and new design techniques had to be developed. The management
of complexity was the main problem, and so the help of computer scientists
was enlisted.

Computer science had already faced problems of complexity in the
development of large programs, and hence the well-established concepts of
modular, hierarchical, block-structured software development were trans-
ferred to VLSI design. Accordingly, a trend towards well-structured (viz
regular) “VLSI chip architectures” and formal “VLSI design
methodologies” was initiated and the development of software “VLSI
design tools” was greatly accelerated. Indeed, VLSI design rapidly became
an accepted subject area of computer science. Major national programmes
were started and new courses, teaching these VLSI disciplines, sprang up all
over the industrial world. Indeed, this book results from one such course.

1.1 VLSI Chip Architecture

In contrast to a random collection of transistors, typical VLSI chip layouts
(viz floorplans) are partitioned into some ordered configuration of functional
blocks, each of which may be composed of a hierarchy of sub-blocks, which
are partitioned into some ordered configuration of base blocks. Thus a VLSI
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chip floorplan can be regarded as a sort of data structure, representing a
“tree” of “composition cells” (viz blocks and sub-blocks) and “leaf cells” (viz
base blocks).

Consequently, at the layout level, a VLSI chip architecture comprises a
set of detailed “leaf-cell” designs and a strategy of floorplan composition.

1.1.1 Leaf-cell design styles

There are four clearly identifiable styles of leaf-cell design, which are
described below. The styles are ranked in order of decreasing human effort
needed for circuit and layout design. This ranking can also be applied to the
complexity of leaf-cell testing.

As an aid to understanding, each style is associated with a scientific or
engineering discipline and the close analogy between the activities of a chip
designer and a gentleman’s tailor is explored.

1.1.1.1 Full-custom cell. This s the physicists’ approach. The design is fully
optimized to achieve the highest performance, the lowest power dissipation
and the smallest non-functional area for the specific requirements of the cell.
Although the most intellectually and aesthetically pleasing, this approach
usually involves the most intricately detailed and time-consuming circuit and
layout design work. Indeed, full-custom leaf-cell design can be likened to the
“bespoke” services of the most expensive tailors. In view of the high design
costs, full-custom design can only be justified for general-purpose memory
and microprocessor chips which can attract a high-volume market (viz
greater than 100K devices per year) or for special-purpose devices dedicated
to military and space applications in which full optimization is essential and
commercial profit is not the most important factor.

1.1.1.2 Simplified full-custom. This a more engineering-oriented
approach, in which the leaf-cell design is only partially optimized. The
designer tries to maximize the use of regular layout patterns (e.g. register
and memory blocks, PLAs, decoders, multiplexers, barrel shifters etc.)
which can be easily modified to fit the specific requirements of the cell. In this
way, the need for intricate design can be limited to those key cells for which
full-custom design is cost-effective. Thus the scope for clever circuit design
is somewhat restricted and layout work is simplified. Indeed, simplified
full-custom leaf-cell design can be likened to the tailoring services of the
larger and more exclusive department stores.

The design technique advocated by Mead and Conway (1980) extends the
simplified full-custom style to the virtual elimination of circuit design and, by
generalizing chip manufacturers’ design rules, to simple manipulation of a
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small number of flexible layout structures. Although rather oversimplified
for serious chip architects, the Mead and Conway method has undoubtedly
encouraged computer scientists to experiment with architectural prototypes.

1.1.1.3  Semi-custom cell. This is a more market-oriented approach, in
which leaf-cell design is restricted to the layout of simple routing between
standard components. Indeed, many commercial ULA (Uncommitted
Logic Array), Gate Array and Standard Cell services are now well estab-
lished. Two styles of semi-custom cell design are evident, these being
distinguished by the type of standard component.

(@) Standard circuit elements. This is the engineers’ approach, since the
emphasis is placed on circuit design. Cells comprise bipolar transistors and
resistors or organizations of MOS transistors, which can be interconnected
to form different circuits. Indeed, this style of semi-custom design can be
likened to the “made-to-measure™ services of the larger clothing chain
stores.

Where layout is restricted to only the interconnection within a fixed
placement of circuit elements, batches of preprocessed wafers can be
stockpiled for rapid customization. An alternative style allows flexible
placement of circuit elements with symbolic routing between them (e.g.
stick level design). Such techniques are normally supported with computer
graphics, with automatic detection of design-rule violation and layout
compaction options.

(b) Standard cell blocks. This is the logician’s approach, since the
emphasis is placed on the logical interconnection of logic gates and func-
tional logic blocks selected from a library of fully engineered standard cells.
Indeed, this style of semi-custom design can be likened to the “off-the-peg”
tailoring services of the larger chain stores.

Standard layout cells can be regarded as high-level language procedures
“compiled in silicon™, and hence the standard cell style usually appeals to
computer scientists.

1.1.1.4  Programmable cells. This is the mathematicians’ or computer
scientists’ approach, since the emphasis is placed on the data content of
standard memory-oriented layout blocks. For example, RAM, ROM, CAM
multiplexer and PLA blocks can be loaded with data tables for rapid
consultation during program execution. Such layout blocks can be used to
create very regular chip floorplans which make good use of silicon. Clearly,
this style of cell is very well suited to computer generation. Indeed, since the
cell design is manifest in the stored data pattern, formal design methods can
be employed. In terms of the tailoring analogy, this style can be likened to
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the provision of army uniforms; with a “best-fit” or “first-fit” policy,
depending on the state of the national economy.

1.1.2 Chip floorplans composition styles

There are five clearly distinguishable styles of chip floorplan composition,
which are described below.

1.1.2.1 Place and route. This is a “block-oriented” approach to chip
composition, for which two sub-classes are evident.

(a) Random routing. This style corresponds to the full-custom approach
to leaf-cell design, since the leaf cells are placed strategically in the floorplan
before interconnection by the shortest possible paths. Consequently, the
style leads to random routing patterns, which are time-consuming to layout
and test, since they are not amenable to computer assistance. Although, at
first thought, such routing seems trivial compared with leaf-cell layouts, it
can be very tedious and highly prone to error.

High-volume memory and microprocessor chips, optimized for the high-
est performance at the lowest cost, usually fall into this category.

(b) Routing channels. With this approach, linear arrays of leaf cells are
separated by routing channels which interconnect at the ends of the arrays.
Usually, the leaf cells are constrained to fit the same vertical dimension and
are sited to make the best use of the array length. Cells are then inter-
connected via the appropriate busses in the routing channels. Clearly, this
style, in conjunction witht the standard cell style of leaf-cell design, is very
well suited to computer generation. Indeed, this combination forms a
popular base for commercial “silicon compilers™.

Unfortunately, the simplicity of this composition style is offset by the
following problems:

(i) resiting of cells is often necessary to ease interconnection bottle-
necks;
(ii) poor layout packing density, due to oversize leaf cells and routing
channels, leads to cost-ineffective use of silicon;
(iii) different and unknown path lengths of cell interconnections leads to
synchronization problems and poor chip performance.

1.1.2.2  Route and slot. This is a “bus-oriented” approach to chip composi-
tion, incorporating a much more regular form of routing channel, to ease the
problems cited above. Indeed, a uniform routing channel is established on
the chip floorplans and then leaf cells are slotted in appropriate locations
relative to the channel. Moreover, this style can benefit from the full



6 R.M.LEA

advantages of computer-aided design. Two sub-classes of route and slot
composition are evident.

(a) Standard bus. Popular for microprocessor chip architectures, this
style slots leaf cells on either side of a strategically placed bus. Such busses
are usually time-multiplexed to save chip area. In conjunction with the
standard cell style of leaf-cell design, this style is well suited to computer
generation.

(b) Grid structure. Currently the most popular routing structure for
ULAs and gate arrays, this style is based on an orthogonal grid of routing
channels. Leaf cells are slotted in the square “holes” of the grid and
connected to the appropriate lines in the channel. Clearly, this style is very
well suited to computer generation.

Although considerably easing problems (i), (ii) and (iii) cited above for
routing channels, the route and slot style still suffers the following
deficiencies:

(i) much of the active chip area is “wasted” on routing channels;
(ii) long signal transmission delays, compared with the logic propagation
delays of the leaf cells, degrade overall chip performance.

1.1.2.3 Bit-sliced structures. This is another “bus-oriented” approach to
chip composition, which develops the standard bus style described above to
minimize its inherent non-functional chip area and signal transmission
delays. The composition style is easily recognized, since data and control
signals are routed orthogonally on two separate communication layers (e.g.
metal and polysilicon in NMOS technology). Leaf cells are bit-sliced and
“hung” below a strategically placed data bus, each bit of the cell aligning with
the corresponding bit of the bus. Thus, a standard bus is integrated within
the leaf cells, which are fixed in height and line-pitch by the dimensions of
the bus.

Although this style is not as well suited to computer generation as route
and slot compositions, several silicon compilers are being developed for this
approach. Two sub-classes of bit-sliced composition are evident.

(a) Abutting cells. In this style leaf cells can support different logical
functions. Cell layouts must conform in height and line-pitch, but cell width
(viz along the bus) can be tailored to suit the cell function. Clearly, this
approach is well suited to the simplified full-custom style of leaf-cell design.
Indeed, the style has found favour with designers of microprocessor data-
paths.

Problems can be experienced with this approach when several different



