

Radio Access Networks for

UMTS

Principles and Practice

TN929.5 J66

RADIO ACCESS NETWORKS FOR UMTS

PRINCIPLES AND PRACTICE

Chris Johnson

Nokia Siemens Networks, UK

John Wiley & Sons, Ltd

Copyright © 2008

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All trademarks referred to in the text of this publication are the property of their respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Johnson, Chris (Chris W.)

Radio access networks for UMTS: principles and practice / Chris Johnson.

p. cm.

Includes index.

ISBN 978-0-470-72405-7 (cloth)

1. Mobile communication systems. I. Title.

TK6570.M6J63 2008

621.384-dc22

2007040535

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-72405-7 (HB)

Typeset in 9/11pt Times by Thomson Digital, New Delhi.

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, England.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

RADIO ACCESS NETWORKS FOR UMTS

Preface

This book provides a comprehensive description of the *Radio Access Networks for UMTS*. It is intended to address the requirements of both the beginner and the more experienced mobile telecommunications engineer. An important characteristic is the inclusion of sections from example log files. More than 180 examples have been included to support the majority of explanations and to reinforce the reader's understanding of the key principles. Another important characteristic is the inclusion of summary bullet points at the start of each section. The reader can use these bullet points either to gain a high-level understanding prior to reading the main content or for subsequent revision. The main content is based upon the release 6 version of the 3GPP specifications. Changes since the release 99 version are described while some of the new features appearing within the release 7 version are introduced.

Starting from the high-level network architecture, the first sections describe the flow of data between the network and end user. The functionality and purpose of each protocol stack layer is explained while the corresponding structure and content of packets are studied. A section is dedicated to describing and contrasting the sets of logical, transport and physical channels. The increasing importance of the bandwidth offered by the transport network connecting the population of Node B to the RNC justifies the inclusion of a dedicated section describing the Iub interface and the associated transport solutions. Dedicated sections are also included for both HSDPA and HSUPA. The bit rates and functionality associated with these technologies are described in detail. A relatively large section is used to describe some of the most important signalling procedures. These include RRC connection establishment, speech call connection establishment, video call connection establishment, PS data connection establishment, SMS data transfer, soft handover and inter-system handover. The accompanying description provides a step-by-step analysis of both the signalling flow and message content. Other sections focus upon the more practical subjects of link budgets and radio network planning. Topics include scrambling code planning, neighbour list planning, antenna subsystem design, co-siting, microcells and indoor solutions.

The content of this book represents the understanding of the author. It does not necessarily represent the view nor opinion of the author's employer. Descriptions are intended to be generic and do not represent the implementation of any individual vendor.

Acknowledgements

The author would like to acknowledge his employer, Nokia Siemens Networks UK Limited for providing the many opportunities to gain valuable project experience. The author would also like to thank his managers from within Nokia Siemens Networks UK Limited for supporting participation within projects which have promoted continuous learning and development. These include Andy King, Peter Love, Aleksi Toikkanen, Stuart Davis, Mike Lawrence and Chris Foster. The author would also like to thank Florian Reymond for providing the opportunities to work on global projects within Nokia Siemens Networks.

The author would like to acknowledge colleagues from within Nokia Siemens Networks who have supported and encouraged the development of material for this book. These include Poeti Boedhihartono, Simon Browne, Gareth Davies, Martin Elsey, Benoist Guillard, Terence Hoh, Harri Holma, Steve Hunt, Sean Irons, Phil Pickering, Kenni Rasmussen, Mike Roche, Lorena Serna Gonzalez, Ian Sharp, Achim Wacker, Volker Wille and Nampol Wimolpitayarat. In addition, the author would like to thank the managers and colleagues from outside Nokia Siemens Networks who have also supported the development of this book. These include Mohamed AbdelAziz, Paul Clarkson, Tony Conlan, Patryk Debicki, Nathan Dyson, Gianluca Formica, Dave Fraley, Ian Miller, Balan Muthiah, Pinaki Roychowdhury, Adrian Sharples and Ling Soon Leh.

The author would also like to offer special thanks to his parents who provided a perfect working environment during the weeks spent in Scotland. He would also like to thank them for their continuous support and encouragement.

The author would like to thank the team at John Wiley & Sons Limited who have made this publication possible. This team has included Mark Hammond, Sarah Hinton, Katharine Unwin and Brett Wells.

Comments regarding the content of this book can be sent to ran4umts@yahoo.co.uk. These will be considered when generating material for future editions.

Abbreviations

16QAM 16 Quadrature Amplitude Modulation 3GPP 3rd Generation Partnership Project 4PAM 4 Pulse Amplitude Modulation 64QAM 64 Quadrature Amplitude Modulation

AAL2 ATM Adaptation Layer 2 AAL5 ATM Adaptation Layer 2

ABR Available Bit Rate
AC Access Class

ACIR Adjacent Channel Interference Ratio
ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

AI Access Indicator

AICH Access Indicator Channel

ALCAP Access Link Control Application Part

AM Acknowledged Mode

AMC Adaptive Modulation and Coding

AMR Adaptive Multi Rate APN Access Point Name

ARFCN Absolute Radio Frequency Channel Number

AS Access Stratum

ASC Access Service Class
ASN Abstract Syntax Notation
ATM Asynchronous Transfer Mode

BCC Base station Colour Code
BCCH Broadcast Control Channel
BCD Binary Coded Decimal
BCH Broadcast Channel
BER Bit Error Rate

BFN Node B Frame Number
BLER Block Error Rate

BMC Broadcast/Multicast Control
BSIC Base Station Identity Code

CAC Connection Admission Control

CBC Cell Broadcast Centre CBR Constant Bit Rate xiv Abbreviations

CBS Cell Broadcast Services

CC Call Control

CCCH Common Control Channel

CCTrCh Coded Composite Transport Channels
CDMA Code Division Multiple Access
CDVT Cell Delay Variation Tolerance
CFN Connection Frame Number

CGI Cell Global Identity CI Cell Identity CID Channel Identifier CIO Cell Individual Offset Cell Loss Priority CLP Cell Loss Ratio CLR CM Compressed Mode Code Offset Indicator COL **CPCH** Common Packet Channel

CPCS Common Part Convergence Sublayer

CPI Common Part Indicator
CPICH Common Pilot Channel
CPS Common Part Sublayer
CQI Channel Quality Indicator
CRC Cyclic Redundancy Check

C-RNTI Cell Radio Network Temporary Identity

CS Circuit Switched

CTCH Common Traffic Channel CTD Cell Transfer Delay

CTFC Calculated Transport Format Combination

DAS Distributed Antenna System
DCCH Dedicated Control Channel

DCH Dedicated Channel

DDI Data Description Indicator

DPCCH Dedicated Physical Control Channel

DPCH Dedicated Physical Channel
DPDCH Dedicated Physical Data Channel

DRT Delay Reference Time
DRX Discontinous Receive

DSAID Destination Signaling Association Identifier

DSCH Downlink Shared Channel
DTCH Dedicated Traffic Channel
DTX Discontinuous Transmit

E-AGCH E-DCH Absolute Grant Channel
Eb/No Energy per bit/Noise spectral density

ECF Establish Confirm

E-DCH Enhanced Dedicated Channel

E-DPCCH E-DCH Dedicated Physical Control Channel
E-DPDCH E-DCH Dedicated Physical Data Channel
EGPRS Enhanced General Packet Radio Service
E-HICH E-DCH Hybrid ARQ Indicator Channel

Abbreviations

EIRP Effective Isotropic Radiated Power E-RGCH E-DCH Relative Grant Channel

ERQ Establish Request

E-TFC E-DCH Transport Format Combination

E-TFCI E-DCH Transport Format Combination Indicator

FACH Forward Access Channel FBI Feedback Information FDD Frequency Division Duplex

F-DPCH Fractional Dedicated Physical Channel

FSN Frame Sequence Number FTP File Transfer Protocol

GFR Guaranteed Frame Rate
GGSN Gateway GPRS Support Node
GMM GPRS Mobility Management
GMSK Gaussian Minimum Shift Keying
GPRS General Packet Radio Service

GRAKE Generalised RAKE

GSMS GPRS Short Message Service

GTP-U User plane GPRS Tunnelling Protocol

HARQ Hybrid Automatic Repeat Request

HCS Hierarchical Cell Structure HEC Header Error Correction HFN Hyper Frame Number

HLBS Highest Priority Logical Channel Buffer Status HLID Highest Priority Logical Channel Identity

HLR Home Location Register HLS Higher Layer Scheduling

HPLMN Home Public Land Mobile Network

H-RNTI HS-DSCH Radio Network Temporary Identity

HSCSD High Speed Circuit Switched Data HSDPA High Speed Downlink Packet Access

HS-DPCCH High Speed Dedicated Physical Control Channel

HS-DSCH High Speed Downlink Shared Channel
HS-PDSCH High Speed Downlink Shared Channel
HS-SCCH High Speed Shared Control Channel
HSUPA High Speed Uplink Packet Access

ICP IMA Control Protocol IE Information Element

IETF Internet Engineering Task Force IMA Inverse Multiplexing for ATM

IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity

IPDL Idle Period Downlink
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ITP Initial Transmit Power

xvi Abbreviations

ITU International Telecommunications Union

LAC Location Area Code
LAI Location Area Identity
LLC Logical Link Control
LSN Last Sequence Number

MAC Medium Access Control MAP Mobile Application Part

MBMS Multimedia Broadcast Multicast Services

MBS Maximum Burst Size
MCC Mobile Country Code
MCCH MBMS Control Channel
MCL Minimum Coupling Loss
MCR Minimum Cell Rate

MDC Macro Diversity Combination **MDCR** Minimum Desired Cell Rate MFS Maximum Frame Size MHA Mast Head Amplifier MIB Master Information Block **MICH** MBMS Indicator Channel MIMO Multiple Input Multiple Output MLP MAC Logical channel Priority

MM Mobility Management
MNC Mobile Network Code
MSCH MBMS Scheduling Channel
MSS Maximum Segment Size
MTCH MBMS Traffic Channel
MTU Maximum Transmission Unit

MUD Multi User Detection

NAS Non-access Stratum

NBAP Node B Application Part

NCC Network Colour Code

NI Notification Indicator

NMO Network Mode of Operation

NNI Network to Network Interface

NRT Non Real Time

NSAP Network Service Access Point

NSAPI Network layer Service Access Point Identifier

OSAID Originating Signalling Association Identifier
OTDOA Observed Time Difference of Arrival

PAP Password Authentication Protocol

PCA Power Control Algorithm
PCCH Paging Control Channel

P-CCPCH Primary Common Control Physical Channel

PCH Paging Channel PCR Peak Cell Rate

Abbreviations xvii

PDCP Packet Data Convergence Protocol PDH Plesiochronous Digital Hierarchy

PDU Packet Data Unit

PER Packed Encoding Rules
PI Paging Indication

PICH Paging Indication Channel
PLMN Public Land Mobile Network
PRACH Physical Random Access Channel

PS Packet Switched

P-SCH Primary Synchronisation Channel PSTN Public Switched Telephone Network

P-TMSI Packet Temporary Mobile Subscriber Identity

PWE3 Psuedo Wire Emulation Edge to Edge

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RAB Radio Access Bearer
RAC Routing Area Code
RACH Random Access Channel
RAI Routing Area Identity
RAN Radio Access Network

RANAP Radio Access Network Application Part

Radio Network Controller

RAT Radio Access Technology

RB Radio Bearer

RDI Restricted Digital Information

RFN RNC Frame Number
RIP Radio Interface Protocol

RL Radio Link

RNC

RLC Radio Link Control RM Rate Matching

RNS Radio Network Sub-system ROHC Robust Header Compression RPP Recovery Period Power control RRC Radio Resource Control RRM Radio Resource Management Received Signal Code Power RSCP RSN Re-transmission Sequence Number RSSI Received Signal Strength Indicator

RT Real Time

RV Redundancy Version

SA Service Area
SAC Service Area Code
SAI Service Area Identity

SAR Segmentation and Reassembly

SAW Stop and Wait

S-CCPCH Secondary Common Control Channel

SCH Synchronisation Channel

xviii Abbreviations

SCR Sustainable Cell Rate

SDH Synchronous Digital Hierarchy

SDU Service Data Unit

SEAL Simple and Efficient ATM Adaptation Layer

SF Spreading Factor
SFN System Frame Number
SGSN Serving GPRS Support Node
SI Scheduling Information
SIB System Information Block
SID Size Index Identifier

SIR Signal to Interference Ratio SM Session Management

SM-AL Short Message Application Layer
SM-RL Short Message Relay Layer
SMS Short Message Service
SM-TL Short Message Transfer Layer
SONET Synchronous Optical Networking

SRB Signalling Radio Bearer

SRNS Serving Radio Network Sub-system
S-RNTI SRNC Radio Network Temporary Identity

SS Supplementary Services

SSADT Service Specific Assured Data Transfer SSCF Service Specific Coordination Function S-SCH Secondary Synchronisation Channel

SSCOP Service Specific Connection Orientated Protocol

SSCS Service Specific Convergence Sublayer
SSDT Site Selection Diversity Transmit
SSSAR Service Specific Segmentation and People

SSSAR Service Specific Segmentation and Reassembly SSTED Service Specific Transmission Error Detection

STTD Space Time Transmit Diversity

SUFI Super Field

TB Transport Block
TBS Transport Block Set

TCP Transmission Control Protocol
TCTF Target Channel Type Field
TDD Time Division Duplex
TDM Time Division Meticals Accepted

TDMA Time Division Multiple Access
TEBS Total E-DCH Buffer Status

TF Transport Format

TFC Transport Format Combination

TFCI Transport Format Combination Indicator
TFCS Transport Format Combination Set

TFI Transport Format Indicator
TFO Tandem Free Operation
TFS Transport Format Set
TGD Transmission Gap Distance
TGL Transmission Gap Length

TGPL Transmission Gap Pattern Length

TGPRC Transmission Gap Pattern Repetition Count

Abbreviations

xix

TGPS Transmission Gap Pattern Sequence

TGPSI Transmission Gap Pattern Sequence Identifier TGSN Transmission Gap Starting Slot Number

THP Traffic Handling Priority
TM Transparent Mode

TMSI Temporary Mobile Subscriber Identity toAWE Time of Arrival Window End point toAWS Time of Arrival Window Start point

TPC Transmit Power Control
TPDU Transfer Protocol Data Unit

TR Technical Report

TrFO Transcoder Free Operation
TS Technical Specification

TSN Transmission Sequence Number
TSTD Time Switched Transmit Diversity
TTI Transmission Time Interval

TTL Time To Live

UARFCN UTRA Absolute Radio Frequency Channel Number

UBR Unspecified Bit Rate

UDI Unrestricted Digital Information

UE User Equipment

UEA UMTS Encryption Algorithm

UIA UMTS Integrity protection Algorithm

UM Unacknowledged Mode

UMTS Universal Mobile Telecommunications System

UNI User to Network Interface UPH UE Power Headroom URA UTRAN Registration Area

U-RNTI UTRAN Radio Network Temporary Identity
USIM Universal Subscriber Identity Module
UTRAN UMTS Terrestrial Radio Access Network

UUI User to User Indication

VBR Variable Bit Rate

VCC Virtual Channel Connection
VPC Virtual Path Connection
VCI Virtual Channel Identifier

VoIP Voice over IP

VPI Virtual Path Identifier

VPLMN Visited Public Land Mobile Network

WCDMA Wideband Code Division Multiple Access

Contents

Preface				i
Ac	know	ledgem	nents	х
Ał	xii			
1	Intr	oductio	on	,
	1.1	Netwo	ork Architecture	
	1.2		Access Technology	
	1.3		ardisation	10
2	Flow of Data			1:
	2.1	Radio	Interface Protocol Stacks	13
		2.1.1	Radio Interface Control Plane	14
		2.1.2	Radio Interface User Plane	19
	2.2	RRC	Layer	2
		2.2.1	RRC States	28
		2.2.2	RRC Procedures	54
		2.2.3	1110 1110000000	56
		2.2.4	UE RRC Timers, Counters and Constants	61
		2.2.5	Other Functions	67
	2.3	RLC I		74
		2.3.1		75
		2.3.2	Unacknowledged Mode	77
		2.3.3	Acknowledged Mode	81
	2.4			101
		2.4.1		102
		2.4.2	Format of MAC PDU	109
		2.4.3	Other Functions	112
	2.5		e Protocol Layer	112
		2.5.1	Dedicated Channels - Data Frames	113
		2.5.2	Dedicated Channels - Control Frames	118
		2.5.3	Common Channels - Data Frames	121
		2.5.4	Common Channels - Control Frames	126
	2.6	-	cal Layer	127
		2.6.1	Physical Layer Processing	128
		2.6.2	Spreading, Scrambling and Modulation	144
		2.6.3	Other Functions	153

i Contents

3		nnel Typ		155 155	
	3.1				
	3.2	•	ort Channels	158	
	3.3	Physica	al Channels	166	
		3.3.1	Common Pilot Channel (CPICH)	168	
		3.3.2	Synchronisation Channel (SCH)	172	
		3.3.3	Primary Common Control Physical Channel (P-CCPCH)	174	
		3.3.4	Secondary Common Control Physical Channel (S-CCPCH)	176	
		3.3.5	Paging Indicator Channel (PICH)	182	
		3.3.6	MBMS Indicator Channel (MICH)	186	
		3.3.7	Acquisition Indicator Channel (AICH)	188	
		3.3.8	Physical Random Access Channel (PRACH)	191	
		3.3.9	Dedicated Physical Channel (DPCH)	204	
		3.3.10	Fractional Dedicated Physical Channel (F-DPCH)	228	
4	Non-Access Stratum				
	4.1	Concep	ots	231	
	4.2	Mobilit	ty Management	233	
	4.3	Connec	ction Management	239	
	4.4	PLMN	Selection	244	
5	Iub Transport Network				
	5.1	_	ol Stacks	249	
		5.1.1	Radio Network Control Plane	251	
		5.1.2	Transport Network Control Plane	253	
		5.1.3	Transport Network User Plane	257	
	5.2	Archite		260	
	5.3	Overhe	eads	264	
	5.4	Service	e Categories	268	
6	HSE	PA		273	
	6.1	Concer	ot	273	
	6.2		A Bit Rates	278	
	6.3	PDCP :		283	
	6.4	RLC L	•	284	
	6.5		1 Entity	287	
	6.6		Protocol Layer	288	
		6.6.1	HS-DSCH Data Frame	289	
		6.6.2	HS-DSCH Control Frames	292	
	6.7	Iub Tra		294	
		6.7.1	ATM Transport Connections	294	
		6.7.2	Transport Overheads	296	
	6.8	MAC-hs Entity		300	
		6.8.1 Flow Control		301	
		6.8.2	Scheduler	304	
		6.8.3	Adaptive Modulation and Coding	307	
		6.8.4	Hybrid Automatic Repeat Request (HARQ)	313	
		6.8.5	Generation of MAC-hs PDU	320	

Contents

	6.9	Physical Channels	322
		6.9.1 High Speed Shared Control Channel (HS-SCCH)	323
		6.9.2 High Speed Physical Downlink Shared Channel (HS-PDSCH)	329
		6.9.3 High Speed Dedicated Physical Control Channel (HS-DPCCH)	332
	6.10	Mobility	337
7	HSU	TPA	343
-	7.1	Concept	343
	7.2	HSUPA Bit Rates	349
	7.3	PDCP Layer	355
	7.4	RLC Layer	355
	7.5	MAC-d Entity	357
	7.6	MAC-es/e Entity (UE)	358
		7.6.1 E-TFC Selection	359
		7.6.2 Hybrid Automatic Repeat Request (HARQ)	368
		7.6.3 Generation of MAC-es PDU	371
		7.6.4 Generation of MAC-e PDU	371
	7.7	Physical Channels	374
		7.7.1 E-DCH Dedicated Physical Control Channel (E-DPCCH)	374
		7.7.2 E-DCH Dedicated Physical Data Channel (E-DPDCH)	378
		7.7.3 E-DCH Hybrid ARQ Indicator Channel (E-HICH)	387
		7.7.4 E-DCH Relative Grant Channel (E-RGCH)	390
		7.7.5 E-DCH Absolute Grant Channel (E-RGCH) 7.7.5 E-DCH Absolute Grant Channel (E-RGCH)	390 392
	7.8	MAC-e Entity (Node B)	
	7.0	7.8.1 Packet Scheduler	394
		7.8.2 De-multiplexing	395
	7.9	Frame Protocol Layer	399
	1.5	7.9.1 E-DCH Data Frame	399
			400
	7 10	7.9.2 Tunnel Congestion Indication Control Frame MAC-es Entity (RNC)	401
		• 0 10	402
	7.11	Mobility	402
8	Signa	alling Procedures	405
	8.1	RRC Connection Establishment	405
	8.2	Speech Call Connection Establishment	429
		8.2.1 Mobile Originated	430
		8.2.2 Mobile Terminated	454
	8.3	Video Call Connection Establishment	459
		8.3.1 Mobile Originated and Mobile Terminated	460
	8.4	Short Message Service (SMS)	469
		8.4.1 Mobile Originated	470
		8.4.2 Mobile Terminated	474
	8.5	PS Data Connection Establishment	477
		8.5.1 Mobile Originated	478
	8.6	Soft Handover	501
		8.6.1 Inter-Node B	501
		8.6.2 Intra-Node B	512
	8.7	Inter-System Handover	514
		8.7.1 Speech	515

9	Plar	ning		533
	9.1		Budgets	533
		9.1.1	DPCH	535
		9.1.2	HSDPA	545
		9.1.3	HSUPA	547
	9.2	Radio	Network Planning	548
		9.2.1	Path Loss based Approach	550
		9.2.2	3G Simulation based Approach	553
	9.3	Scram	abling Code Planning	556
		9.3.1	Downlink	557
		9.3.2	Uplink	560
	9.4	Neighl	bour Planning	561
		9.4.1	Intra-Frequency	563
		9.4.2	Inter-Frequency	564
		9.4.3	Inter-System	566
		9.4.4	Maximum Neighbour List Lengths	567
	9.5	Anteni	na Subsystems	572
		9.5.1	Antenna Characteristics	573
		9.5.2	Dedicated Subsystems	576
		9.5.3	Shared Subsystems	578
	9.6	Co-siti	ing	578
		9.6.1	Spurious Emissions	581
		9.6.2	Receiver Blocking	583
		9.6.3	Intermodulation	585
		9.6.4	Achieving Sufficient Isolation	586
	9.7	Micro	cells	587
		9.7.1	RF Carrier Allocation	588
		9.7.2	Sectorisation	588
		9.7.3	Minimum Coupling Loss	589
		9.7.4	Propagation Modelling	590
		9.7.5	Planning Assumptions	591
	9.8	Indoor	r Solutions	592
		9.8.1	RF Carrier Allocation	593
		9.8.2	Sectorisation	593
		9.8.3	Active and Passive Solutions	593
		9.8.4	Minimum Coupling Loss	594
		9.8.5	Leakage Requirements	595
		9.8.6	Antenna Placement	596
Ref	erenc	es		597
Inde	ex	599		