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Preface

This text provides a comprehensive discussion of the theory and design of regen-
erative heat exchangers for cryogenic applications. Previous texts have treated
regenerators as a small subsection of the larger topic of continuous gas-to-gas
heat exchangers. However, with the emergence of regenerative devices in cryo-
genic applications and the recent commercialization of many of these devices, a
text devoted exclusively to regenerative heat exchangers is now appropriate.

Regenerators represent an important class of heat exchangers, in which heat
exchange between two fluids occurs through an intermediate exchange with a
matrix of high-heat-capacity material. This unique operation leads to a periodic
heat exchange between two fluids, in place of the continuous heat exchange found
in counterflow heat exchangers. This periodic nature of regenerators contributes
to two important design characteristics: First, the use of a matrix material leads to
a high-performance, compact geometry and, second, the periodicity of the flow
leads to complex mathematical analyses based on time-dependent temperature
and heat transfer parameters. The compact construction and periodic nature are
important regenerator characteristics and are largely responsible for the many
successful commercial applications they have enjoyed. The complexity of the
analyses, however, has led to the need for costly development programs to design
regenerators for new applications. This book explores these diverse characteris-
tics with the intent of providing engineers with the theoretical background and
data required to design a regenerator. In particular, we explore the requirements
and use of regenerators in cryogenic applications, where the characteristics of"
high efficiency, small size, and low pressure drop have enabled small cryogenic
refrigerators to achieve substantial commercial success over the last 25 years.
This book is intended to provide engineers with both the theory and practical
aspects of regenerator design so that they can effectively use them in the devel-
opment of advanced cryogenic devices.

The text is organized into five chapters dealing with historical developments,
theory, practical applications, design data, and numerical solutions.

Chapter 1 reviews the historical development of cryogenic refrigeration and
the use of regenerators in these devices. The history of regenerator designs is

v



vi Preface

significant because it illustrates the broad spectrum of regenerator applications
and their varied design features. The regenerative heat exchanger was first devel-
oped by Dr. Robert Stirling in 1816 for use in his hot air engine. From this
important beginning, regenerators have achieved success in such diverse applica-
tions as high-temperature gas turbines and low-temperature cryogenic refrigera-
tors. In cryogenic applications, the regenerator has been instrumental in the
development of small refrigerators for military infrared systems and in commer-
cial uses involving cryopumping and cooling of superconducting magnets in
medical imaging systems. It is the emergence of these applications and the
importance of cryogenic refrigerators in advancing this commercialization that
provide the foundation for this book.

Chapter 2 presents the development of the thermal and fluid dynamic equa-
tions required to analyze regenerator performance. The discussion includes the
development of the basic differential equations that govern the heat transfer and
fluid flow characteristics of a regenerator. These equations describe the tempera-
ture distributions in the matrix material and fluid as functions of both space and
time and lead to a complex set of differential equations for which no closed-form
solutions exist. To provide insight into the operation of a regenerator, we present
the concept of an ideal regenerator and make several assumptions that reduce the
complexity of the differential equations. This simplification enables the definition
of a set of design parameters that characterize basic regenerator performance. The
chapter concludes with a review of several prominent matrix geometries and the
development of the mathematical formulas that define the heat transfer and flow
characteristics of these geometries. The geometries include woven screen,
spheres, gaps, and wound foils.

Chapter 3 covers the classical solutions of the ideal regenerator equations
and discusses the effects of longitudinal thermal conduction and variable matrix
heat capacity on regenerator performance. The review of classical solutions pre-
sents Hausen’s comparison of the temperature changes in a regenerator with those
of a recuperative heat exchanger and discusses the important similarities and
differences between these two types of heat exchangers. The review also covers
Nusselt’s derivation of an integral equation to describe the fluid temperature
distributions based on a defined initial matrix temperature distribution and Iliffe’s
numerical solution of Nusselt’s integral equation, which provides an important
description of the cyclic matrix and fluid temperature distributions in a regen-
erator.

Because of the importance of variable specific heat on cryocooler perfor-
mance at very low temperatures, below 10 K, we conclude the chapter by con-
sidering recent developments of the use of rare-earth intermetallic compounds in
very-low-temperature applications. These materials exhibit a magnetic phase
transition that manifests itself in a large increase in specific heat at the transition
temperature. By using these materials, researchers for the first time have been
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able to extend the operational range of regenerative cryocoolers to below the
normal boiling temperature of helium, a remarkable achievement that has great
commercial potential in the field of superconductivity.

Chapter 4 presents regenerator design and performance data. The material is
a compilation of data that have appeared in technical publications over the past 30
years, including a review of the test and data reduction methods most commonly
used to obtain the heat transfer coefficient, the longitudinal thermal conductivity,
and the heat transfer efficiency of porous materials. The data presented are for a
variety of matrix geometries and materials, including coarse and fine bronze and
stainless-steel woven wire mesh screens and lead spheres. The results include
room-temperature data obtained by researchers at Stanford University during the
1950s and 1960s using a single-blow test rig and more recent cryogenic tempera-
ture data for temperatures down to 20 K obtained using periodic flow test appa-
ratus. The objective of this chapter is to provide a comprehensive file of useful
data for engineers to use in the design of regenerators for new cryogenic applica-
tions.

Chapter 5 deals with numerical techniques used to solve the complex non-
ideal performance equations and methods for optimizing regenerator perfor-
mance. Numerical methods represent an open form of solution to the
regenerator equations in which the differential equations are replaced with dif-
ference equations and solutions are obtaincd by a stepwise iterative process. The
development of the difference equations, the solution of these equations, the
necessary conditions for convergence, and the accuracy of the solutions are
presented for a first-order model that assumes constant flow and pressure and
zero fluid stored energy. It is shown that by describing the regenerator as a series
of parallel flow elements with the fluid and matrix material represented as parallel
flow streams, good accuracy, with reasonable amounts of computational time, can
be achieved.

Regenerator optimization is illustrated with an example of the optimization
of a regenerator for a Stirling cycle refrigerator. The criteria for optimizing the
regenerator and the development of the equations relating the key parameters to
regenerator performance are presented for this example. The equations are devel-
oped through a phasor representation of the pressure and volume variations in a
Stirling cryocooler and the use of the Schmidt method of analysis to relate
regenerator performance to such critical regenerator parameters as matrix geo-
metry, length, diameter, and matrix porosity.

The final chapter, Chapter 6, presents a discussion of regenerators used in
cryogenic refrigeration equipment. The application and performance of a regen-
erative heat exchanger in low-temperature equipment is presented by considering
Stirling, Gifford-McMahon, pulse tube, and magnetic cryocoolers. The operation
of the regenerator in each of these devices is discussed, and the importance of the
regenerator to the overall efficient operation of the cryocooler is examined.
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Unique operating features of cryocoolers that produce deviations from ideal
regenerator theory are discussed.

The author is indebted to Ms. Karin Ostrom for her outstanding job of
editing and preparing the manuscript. The author also wishes to acknowledge
the support of the General Electric Company and the staff of GE Corporate
Research and Development for their help in locating and obtaining the research
material required to write this book.

Robert A. Ackermann
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